提出了一种将农业知识表示语言KRL(Knowledge Representation Language of Agriculture)转换到Java代码的设计方法,给出了一组从KRL到Java的转换规则。通过设计一个KtoJ翻译器完成自动转换功能,使得KRL表示的知识库能够跨平台,并具有一...提出了一种将农业知识表示语言KRL(Knowledge Representation Language of Agriculture)转换到Java代码的设计方法,给出了一组从KRL到Java的转换规则。通过设计一个KtoJ翻译器完成自动转换功能,使得KRL表示的知识库能够跨平台,并具有一定的软件重用和面向对象特性,其中有些研究观点和结论适用于相关程序语言转化的工作,并对面向对象语言转换问题有所启示。展开更多
Considering that the prediction accuracy of the traditional traffic flow forecasting model is low,based on kernel adaptive filter(KAF)algorithm,kernel least mean square(KLMS)algorithm and fixed-budget kernel recursive...Considering that the prediction accuracy of the traditional traffic flow forecasting model is low,based on kernel adaptive filter(KAF)algorithm,kernel least mean square(KLMS)algorithm and fixed-budget kernel recursive least-square(FB-KRLS)algorithm are presented for online adaptive prediction.The computational complexity of the KLMS algorithm is low and does not require additional solution paradigm constraints,but its regularization process can solve the problem of regularization performance degradation in high-dimensional data processing.To reduce the computational complexity,the sparse criterion is introduced into the KLMS algorithm.To further improve forecasting accuracy,FB-KRLS algorithm is proposed.It is an online learning method with fixed memory budget,and it is capable of recursively learning a nonlinear mapping and changing over time.In contrast to a previous approximate linear dependence(ALD)based technique,the purpose of the presented algorithm is not to prune the oldest data point in every time instant but it aims to prune the least significant data point,thus suppressing the growth of kernel matrix.In order to verify the validity of the proposed methods,they are applied to one-step and multi-step predictions of traffic flow in Beijing.Under the same conditions,they are compared with online adaptive ALD-KRLS method and other kernel learning methods.Experimental results show that the proposed KAF algorithms can improve the prediction accuracy,and its online learning ability meets the actual requirements of traffic flow and contributes to real-time online forecasting of traffic flow.展开更多
针对测试训练期间变化的信道环境,提出一种新的滑动窗近似线性依赖稀疏的核递推最小二乘算法。该算法核矩阵的尺寸只与滑动窗口宽度有关。选择字典表中最近的L个数据测试近似线性依赖准则,减少系统开销并降低系统实现的复杂度,克服ALD-K...针对测试训练期间变化的信道环境,提出一种新的滑动窗近似线性依赖稀疏的核递推最小二乘算法。该算法核矩阵的尺寸只与滑动窗口宽度有关。选择字典表中最近的L个数据测试近似线性依赖准则,减少系统开销并降低系统实现的复杂度,克服ALD-KRLS算法核矩阵随字典表线性增长的缺陷。当训练序列的自相关矩阵特征根谱大于40时,较SW-KRLS均方误差性能有近3 d B的改善,且具有更小的稳态失调特性。仿真结果表明,与ALD-KRLS算法和KRLS算法相比,该算法具有更快的收敛速度和较好的均方误差性能。展开更多
Forecasting error amending is a universal solution to improve short-term wind power forecasting accuracy no matter what specific forecasting algorithms are applied. The error correction model should be presented consi...Forecasting error amending is a universal solution to improve short-term wind power forecasting accuracy no matter what specific forecasting algorithms are applied. The error correction model should be presented considering not only the nonlinear and non-stationary characteristics of forecasting errors but also the field application adaptability problems. The kernel recursive least-squares(KRLS) model is introduced to meet the requirements of online error correction. An iterative error modification approach is designed in this paper to yield the potential benefits of statistical models, including a set of error forecasting models. The teleconnection in forecasting errors from aggregated wind farms serves as the physical background to choose the hybrid regression variables. A case study based on field data is found to validate the properties of the proposed approach. The results show that our approach could effectively extend the modifying horizon of statistical models and has a better performance than the traditional linear method for amending short-term forecasts.展开更多
文摘提出了一种将农业知识表示语言KRL(Knowledge Representation Language of Agriculture)转换到Java代码的设计方法,给出了一组从KRL到Java的转换规则。通过设计一个KtoJ翻译器完成自动转换功能,使得KRL表示的知识库能够跨平台,并具有一定的软件重用和面向对象特性,其中有些研究观点和结论适用于相关程序语言转化的工作,并对面向对象语言转换问题有所启示。
基金National Natural Science Foundation of China(No.51467008)
文摘Considering that the prediction accuracy of the traditional traffic flow forecasting model is low,based on kernel adaptive filter(KAF)algorithm,kernel least mean square(KLMS)algorithm and fixed-budget kernel recursive least-square(FB-KRLS)algorithm are presented for online adaptive prediction.The computational complexity of the KLMS algorithm is low and does not require additional solution paradigm constraints,but its regularization process can solve the problem of regularization performance degradation in high-dimensional data processing.To reduce the computational complexity,the sparse criterion is introduced into the KLMS algorithm.To further improve forecasting accuracy,FB-KRLS algorithm is proposed.It is an online learning method with fixed memory budget,and it is capable of recursively learning a nonlinear mapping and changing over time.In contrast to a previous approximate linear dependence(ALD)based technique,the purpose of the presented algorithm is not to prune the oldest data point in every time instant but it aims to prune the least significant data point,thus suppressing the growth of kernel matrix.In order to verify the validity of the proposed methods,they are applied to one-step and multi-step predictions of traffic flow in Beijing.Under the same conditions,they are compared with online adaptive ALD-KRLS method and other kernel learning methods.Experimental results show that the proposed KAF algorithms can improve the prediction accuracy,and its online learning ability meets the actual requirements of traffic flow and contributes to real-time online forecasting of traffic flow.
文摘针对测试训练期间变化的信道环境,提出一种新的滑动窗近似线性依赖稀疏的核递推最小二乘算法。该算法核矩阵的尺寸只与滑动窗口宽度有关。选择字典表中最近的L个数据测试近似线性依赖准则,减少系统开销并降低系统实现的复杂度,克服ALD-KRLS算法核矩阵随字典表线性增长的缺陷。当训练序列的自相关矩阵特征根谱大于40时,较SW-KRLS均方误差性能有近3 d B的改善,且具有更小的稳态失调特性。仿真结果表明,与ALD-KRLS算法和KRLS算法相比,该算法具有更快的收敛速度和较好的均方误差性能。
基金partly supported by National Natural Science Foundation of China(No.51190101)science and technology project of State Grid,Research on the combined planning method for renewable power base based on multi-dimensional characteristics of wind and solar energy
文摘Forecasting error amending is a universal solution to improve short-term wind power forecasting accuracy no matter what specific forecasting algorithms are applied. The error correction model should be presented considering not only the nonlinear and non-stationary characteristics of forecasting errors but also the field application adaptability problems. The kernel recursive least-squares(KRLS) model is introduced to meet the requirements of online error correction. An iterative error modification approach is designed in this paper to yield the potential benefits of statistical models, including a set of error forecasting models. The teleconnection in forecasting errors from aggregated wind farms serves as the physical background to choose the hybrid regression variables. A case study based on field data is found to validate the properties of the proposed approach. The results show that our approach could effectively extend the modifying horizon of statistical models and has a better performance than the traditional linear method for amending short-term forecasts.