期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
CMOS Direct-Injection Divide-by-3 Injection-Locked Frequency Dividers
1
作者 Chia-Wei Chang Jhin-Fang Huang +2 位作者 Sheng-Lyang Jang Ying-Hsiang Liao Miin-Horng Juang 《Journal of Measurement Science and Instrumentation》 CAS 2010年第S1期118-120,128,共4页
This paper proposes CMOS LC-tank divide-by-3 injection locked frequency dividers(ILFDs)fabricated in 0.18μn and 90nm CMOS process and describes the circuit design,operation principle and measurement results of the IL... This paper proposes CMOS LC-tank divide-by-3 injection locked frequency dividers(ILFDs)fabricated in 0.18μn and 90nm CMOS process and describes the circuit design,operation principle and measurement results of the ILFDs.The ILFDs use two injection series-MOSFETs across the LC resonator and a differential injection signal is applied to the gates of injection MOSFETs.The direct-injection divide-by-3 ILFDs are potential for radio-frequency application and can have wide locking range. 展开更多
关键词 LC-tank divide-by-3 injection-locked frequency divider DIRECT-INJECTION locking range CMOS
下载PDF
A 30GHz Wideband CMOS Injection-Locked Frequency Divider for 60GHz Transceiver
2
作者 Chunqi Shi Runxi Zhang Zongsheng Lai 《Communications and Network》 2013年第3期6-10,共5页
In this paper, a 30 GHz wide locking-range (26.2 GHz-35.7 GHz) direct injection-locked frequency divider (ILFD), which operating in the millimeter-wave (MMW) band, is presented. The locking range of the ILFD is extend... In this paper, a 30 GHz wide locking-range (26.2 GHz-35.7 GHz) direct injection-locked frequency divider (ILFD), which operating in the millimeter-wave (MMW) band, is presented. The locking range of the ILFD is extended by using differential injection topology. Besides, varactors are used in RLC resonant tank for extending the frequency tuning range. The post simulation results show that a wide locking-range of 9.5 GHz (30.7%) is achieved. When the VCO output frequency varies from 26.85 GHz to 34.42 GHz, the proposed ILFD can achieve divide-by-two correctly. Designed in 0.13 μm CMOS technology, the ILFD occupies a core area of 0.76 mm2 while drawing 7 mA of current from 2.5 V power supply. 展开更多
关键词 CMOS injection-locked frequency divider (ILFD) LOCKING Range VCO WIDEBAND
下载PDF
A 31–45.5 GHz injection-locked frequency divider in 90-nm CMOS technology
3
作者 Fa-en LIU Zhi-gong WANG +3 位作者 Zhi-qun LI Qin LI Lu TANG Ge-liang YANG 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2014年第12期1183-1189,共7页
We present a 31–45.5 GHz injection-locked frequency divider(ILFD) implemented in a standard 90-nm CMOS process. To reduce parasitic capacitance and increase the operating frequency, an NMOS-only cross-coupled pair is... We present a 31–45.5 GHz injection-locked frequency divider(ILFD) implemented in a standard 90-nm CMOS process. To reduce parasitic capacitance and increase the operating frequency, an NMOS-only cross-coupled pair is adopted to provide negative resistance. Acting as an adjustable resistor, an NMOS transistor with a tunable gate bias voltage is connected to the differential output terminals for locking range extension. Measurements show that the designed ILFD can be fully functional in a wide locking range and provides a good figure-of-merit. Under a 1 V tunable bias voltage, the self-resonant frequency of the divider is 19.11 GHz and the maximum locking range is 37.7% at 38.5 GHz with an input power of 0 d Bm. The power consumption is 2.88 m W under a supply voltage of 1.2 V. The size of the chip including the pads is 0.62 mm×0.42 mm. 展开更多
关键词 CMOS injection-locked frequency divider(ILFD) Millimeter wave Wide locking range Monolithic microwave integrated circuit(MMIC)
原文传递
A Ka-band wide locking range frequency divider with high injection sensitivity 被引量:1
4
作者 刘法恩 王志功 +4 位作者 李智群 李芹 唐路 杨格亮 李竹 《Journal of Semiconductors》 EI CAS CSCD 2014年第3期109-115,共7页
This paper proposes a direct injection-locked frequency divider(ILFD) with a wide locking range in the Ka-band. A complementary cross-coupled architecture is used to enhance the overdriving voltage of the switch tra... This paper proposes a direct injection-locked frequency divider(ILFD) with a wide locking range in the Ka-band. A complementary cross-coupled architecture is used to enhance the overdriving voltage of the switch transistor so that the divider locking range is extended efficiently. New insights into the locking range and output power are proposed. A new method to analyze and optimize the injection sensitivity is presented and a layout technique to reduce the parasitics of the cross-coupled transistors is applied to decrease the frequency shift and the locking range degradation. The circuit is designed in a standard 90-nm CMOS process. The total locking range of the ILFD is 43.8% at 34.5 GHz with an incident power of –3.5 dBm. The divider IC consumes 3.6 mW of power at the supply voltage of 1.2 V. The chip area including the pads is 0.50.5 mm2. 展开更多
关键词 IC design CMOS ka-band direct injection-locked frequency divider ILFD
原文传递
A fully-differential phase-locked loop frequency synthesizer for 60-GHz wireless communication 被引量:2
5
作者 况立雪 池保勇 +2 位作者 陈磊 贾雯 王志华 《Journal of Semiconductors》 EI CAS CSCD 2014年第12期62-67,共6页
A 40-GHz phase-locked loop(PLL) frequency synthesizer for 60-GHz wireless communication applications is presented. The electrical characteristics of the passive components in the VCO and LO buffers are accurately ex... A 40-GHz phase-locked loop(PLL) frequency synthesizer for 60-GHz wireless communication applications is presented. The electrical characteristics of the passive components in the VCO and LO buffers are accurately extracted with an electromagnetic simulator HFSS. A differential tuning technique is utilized in the voltage controlled oscillator(VCO) to achieve higher common-mode noise rejection and better phase noise performance. The VCO and the divider chain are powered by a 1.0 V supply while the phase-frequency detector(PFD)and the charge pump(CP) are powered by a 2.5 V supply to improve the linearity. The measurement results show that the total frequency locking range of the frequency synthesizer is from 37 to 41 GHz, and the phase noise from a 40 GHz carrier is –97.2 dBc/Hz at 1 MHz offset. Implemented in 65 nm CMOS, the synthesizer consumes a DC power of 62 m W, including all the buffers. 展开更多
关键词 MILLIMETER-WAVE frequency synthesizer quadrature injection-locked divider CMOS
原文传递
Analysis and design of transformer-based CMOS ultra-wideband millimeter-wave circuits for wireless applications: a review 被引量:1
6
作者 Yi-ming YU Kai KANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2020年第1期97-115,共19页
With a lot of millimeter-wave(mm-Wave)applications being issued,wideband circuits and systems have attracted much attention because of their strong applicability and versatility.In this paper,four transformer-based ul... With a lot of millimeter-wave(mm-Wave)applications being issued,wideband circuits and systems have attracted much attention because of their strong applicability and versatility.In this paper,four transformer-based ultra-wideband mm-Wave circuits demonstrated in CMOS technologies are reviewed from theoretical analysis,implementation,to performance.First,we introduce a mm-Wave low-noise amplifier with transformer-based Gm-boosting and pole-tuning techniques.It achieves wide operating bandwidth,low noise figure,and good gain performance.Second,we review an injection-current-boosting technique which can significantly increase the locking range of mm-Wave injection-locked frequency triplers.Based on the injectionlocked principle,we also discuss an ultra-wideband mm-Wave divider with the transformer-based high-order resonator.Finally,an E-band up-conversion mixer is presented;using the two-path transconductance stage and transformer-based load,it obtains good linearity and a large operating band. 展开更多
关键词 CMOS Millimeter-wave(mm-Wave) ULTRA-WIDEBAND TRANSFORMER Low-noise amplifier injection-locked frequency tripler injection-locked frequency divider Mixer
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部