In the Kaapvaal craton of southern Africa, as well as other Archaean cratons worldwide, the progression from dominant tonalite-trondhjemite-granodiorite(TTG) to granite-monzogranite-syenogranite(GMS)rock types is inte...In the Kaapvaal craton of southern Africa, as well as other Archaean cratons worldwide, the progression from dominant tonalite-trondhjemite-granodiorite(TTG) to granite-monzogranite-syenogranite(GMS)rock types is interpreted to reflect progressive reworking and differentiation of the continental crust.Here we re-evaluate the early Archaean evolution of the Kaapvaal craton and propose a unified view of the plutonic and volcanic records based on elemental and isotopic(Nd, Hf) data and zircon U-Pb ages.We also report new whole-rock major and trace element analyses, zircon U-Pb ages and Hf-in-zircon analyses of igneous clasts from a conglomerate of the 3.2 Ga Moodies Group of the Barberton Greenstone Belt. Many of these clasts are derived from shallow intrusive rocks of granitic composition, which are scarcely represented in outcrop. Despite alteration, the volcanic rocks can be classified based on their trace element contents into two main groups by comparison with plutonic rocks. One group has characteristics resembling TTGs: relatively low and fractionated rare earth element concentrations with no Eu anomaly and relatively low concentrations of high field strength elements(Nb mostly ≤12 ppm). The second group has GMS-like characteristics: less fractionated REE, marked negative Eu anomalies and HFSE-increasing trends with progressing fractionation(Nb ≤ 50 ppm or more, Th up to 30-40 ppm). In addition, igneous clasts of Moodies Group conglomerate have chemical, mineralogical and isotopic characteristics that link them to GMS. New analyses of some of these clasts indicate elevated high field strength elements(Nb up to 20 ppm) and_(εHf)(t)of zircon down to -3.5. These rocks imply the presence of an already differentiated felsic crust at >3.5 Ga, which has Nd and Hf model ages indicating mantle extraction ages extending back to the Eoarchaean. The combined record of plutonic and volcanic rocks of the Kaapvaal craton provides a more complex scenario than previously suggested and indicates that TTG and GMS-like felsic magmas were emplaced broadly coevally in multiple pulses between ~3.5 Ga and 3.2 Ga.展开更多
On the 3rd of April 2017, an earthquake of moment magnitude 6.5 occurred near Moiyabana in central Botswana. This paper is aimed at studying the spatial distribution of the foreshock and aftershock sequences associate...On the 3rd of April 2017, an earthquake of moment magnitude 6.5 occurred near Moiyabana in central Botswana. This paper is aimed at studying the spatial distribution of the foreshock and aftershock sequences associated with the Moiyabana earthquake. The foreshocks and aftershocks data used were from the Botswana Geoscience Institute (BGI) and the Seisan software was used to analyze the foreshock and aftershock events. The analyses revealed nine epicenter locations of foreshocks which are spread out across the country and most of them are located in the central and southern parts of Botswana, while the aftershocks are clustered around the mainshock. Although five of the nine foreshocks occurred far from the boundaries of major tectonic units, the other four occurred near key features such as the Zoetfontein, Lecha and Chobe faults. The spatial distribution of aftershocks indicates that the stress released by the mainshock, re-activated the planes of weakness in the vicinity of the mainshock and farther away from the mainshock. Hence, this affected the Zoetfontein fault, the boundary between Passarge basin and Magondi belt and the boundary between the Kaapvaal craton and Limpopo mobile belt. The aftershocks also show a northwest-southeast trend, which probably indicates the rupture plane;and mainly lie within the Limpopo mobile belt that is sandwiched between the Kaapvaal craton to the south and Zimbabwe craton to the north. Furthermore, the aftershocks concentration to the south reveals a close relation in demarcating the boundary of the Kaapvaal craton and the Limpopo mobile belt.展开更多
基金supported through the years by Innovation Fellowship funds of the National Research Foundation (Innovation Postdoctoral Fellowship grant number 80422)a Post-doctoral Fellowship of the University of Johannesburg (at UJ)+2 种基金SIEF funds(Grant No. RP04-063 at Curtin)to AAthe NRFNEP funded (grant#93208)LA-MC-ICPMSCIMERA for their further financial support of the laboratory
文摘In the Kaapvaal craton of southern Africa, as well as other Archaean cratons worldwide, the progression from dominant tonalite-trondhjemite-granodiorite(TTG) to granite-monzogranite-syenogranite(GMS)rock types is interpreted to reflect progressive reworking and differentiation of the continental crust.Here we re-evaluate the early Archaean evolution of the Kaapvaal craton and propose a unified view of the plutonic and volcanic records based on elemental and isotopic(Nd, Hf) data and zircon U-Pb ages.We also report new whole-rock major and trace element analyses, zircon U-Pb ages and Hf-in-zircon analyses of igneous clasts from a conglomerate of the 3.2 Ga Moodies Group of the Barberton Greenstone Belt. Many of these clasts are derived from shallow intrusive rocks of granitic composition, which are scarcely represented in outcrop. Despite alteration, the volcanic rocks can be classified based on their trace element contents into two main groups by comparison with plutonic rocks. One group has characteristics resembling TTGs: relatively low and fractionated rare earth element concentrations with no Eu anomaly and relatively low concentrations of high field strength elements(Nb mostly ≤12 ppm). The second group has GMS-like characteristics: less fractionated REE, marked negative Eu anomalies and HFSE-increasing trends with progressing fractionation(Nb ≤ 50 ppm or more, Th up to 30-40 ppm). In addition, igneous clasts of Moodies Group conglomerate have chemical, mineralogical and isotopic characteristics that link them to GMS. New analyses of some of these clasts indicate elevated high field strength elements(Nb up to 20 ppm) and_(εHf)(t)of zircon down to -3.5. These rocks imply the presence of an already differentiated felsic crust at >3.5 Ga, which has Nd and Hf model ages indicating mantle extraction ages extending back to the Eoarchaean. The combined record of plutonic and volcanic rocks of the Kaapvaal craton provides a more complex scenario than previously suggested and indicates that TTG and GMS-like felsic magmas were emplaced broadly coevally in multiple pulses between ~3.5 Ga and 3.2 Ga.
文摘On the 3rd of April 2017, an earthquake of moment magnitude 6.5 occurred near Moiyabana in central Botswana. This paper is aimed at studying the spatial distribution of the foreshock and aftershock sequences associated with the Moiyabana earthquake. The foreshocks and aftershocks data used were from the Botswana Geoscience Institute (BGI) and the Seisan software was used to analyze the foreshock and aftershock events. The analyses revealed nine epicenter locations of foreshocks which are spread out across the country and most of them are located in the central and southern parts of Botswana, while the aftershocks are clustered around the mainshock. Although five of the nine foreshocks occurred far from the boundaries of major tectonic units, the other four occurred near key features such as the Zoetfontein, Lecha and Chobe faults. The spatial distribution of aftershocks indicates that the stress released by the mainshock, re-activated the planes of weakness in the vicinity of the mainshock and farther away from the mainshock. Hence, this affected the Zoetfontein fault, the boundary between Passarge basin and Magondi belt and the boundary between the Kaapvaal craton and Limpopo mobile belt. The aftershocks also show a northwest-southeast trend, which probably indicates the rupture plane;and mainly lie within the Limpopo mobile belt that is sandwiched between the Kaapvaal craton to the south and Zimbabwe craton to the north. Furthermore, the aftershocks concentration to the south reveals a close relation in demarcating the boundary of the Kaapvaal craton and the Limpopo mobile belt.