We present a systematical study on single crystalline FeSb2 using electrical transport and magnetic torque measurements at low temperatures. Nonlinear magnetic field dependence of Hall resistivity demonstrates a multi...We present a systematical study on single crystalline FeSb2 using electrical transport and magnetic torque measurements at low temperatures. Nonlinear magnetic field dependence of Hall resistivity demonstrates a multi-carrier transport instinct of the electronic transport. Current-controlled negative differential resistance(CC-NDR) observed in currentvoltage characteristics below ~ 7 K is closely associated with the intrinsic transition ~ 5 K of FeSb2, which is, however,mediated by extrinsic current-induced Joule heating effect. The antimony crystallized in a preferred orientation within the FeSb2 lattice in the high-temperature synthesis process leaves its fingerprint in the de Haas-Van Alphen(dHvA) oscillations, and results in the regular angular dependence of the oscillating frequencies. Nevertheless, possible existence of intrinsic non-trivial states cannot be completely ruled out. Our findings call for further theoretical and experimental studies to explore novel physics on flux-free grown FeSb_2 crystals.展开更多
近年来,石墨烯材料由于优异的光电性能获得了广泛关注,并应用于发光二极管的透明电极以取代昂贵的铟锑氧化物(indium tin oxide,ITO)透明电极,但由于石墨烯与p-GaN功函数不匹配,二者很难形成好的欧姆接触,因而造成器件电流扩展差和电压...近年来,石墨烯材料由于优异的光电性能获得了广泛关注,并应用于发光二极管的透明电极以取代昂贵的铟锑氧化物(indium tin oxide,ITO)透明电极,但由于石墨烯与p-GaN功函数不匹配,二者很难形成好的欧姆接触,因而造成器件电流扩展差和电压高等问题.本文将ITO薄层作为石墨烯透明电极与p-Ga N间的插入层,以改善石墨烯与p-Ga N层的欧姆接触.所制备的石墨烯透明电极的方块电阻为252.6Ω/□,石墨烯/ITO复合透明电极的方块电阻为70.1Ω/□;石墨烯透明电极与p-Ga N层的比接触电阻率为1.92×10^–2Ω·cm^2,ITO插入之后,其比接触电阻率降低为1.01×10^–4Ω·cm^2;基于石墨烯透明电极的发光二极管(light emitting diode,LED),在20 m A注入电流下,正向电压为4.84 V,而石墨烯/ITO复合透明电极LED正向电压降低至2.80 V,且光输出功率得到提高.这归因于石墨烯/ITO复合透明电极与p-Ga N界面处势垒高度的降低,进而改善了欧姆接触;另外,方块电阻的降低,使得电流扩展均匀性也得到了提高.所采用的复合透明电极减少了ITO的用量,得到了良好的欧姆接触,为LED透明电极提供了一种可行方案.展开更多
基金supported by Guangdong Innovative and Entrepreneurial Research Team Program,China(Grant No.2016ZT06D348)the National Natural Science Foundation of China(Grant No.11874193)+1 种基金the Shenzhen Fundamental Subject Research Program,China(Grant Nos.JCYJ20170817110751776 and JCYJ20170307105434022)The work at Brookhaven is supported by the US Department of Energy,Office of Basic Energy Sciences as part of the Computational Material Science Program(material synthesis)
文摘We present a systematical study on single crystalline FeSb2 using electrical transport and magnetic torque measurements at low temperatures. Nonlinear magnetic field dependence of Hall resistivity demonstrates a multi-carrier transport instinct of the electronic transport. Current-controlled negative differential resistance(CC-NDR) observed in currentvoltage characteristics below ~ 7 K is closely associated with the intrinsic transition ~ 5 K of FeSb2, which is, however,mediated by extrinsic current-induced Joule heating effect. The antimony crystallized in a preferred orientation within the FeSb2 lattice in the high-temperature synthesis process leaves its fingerprint in the de Haas-Van Alphen(dHvA) oscillations, and results in the regular angular dependence of the oscillating frequencies. Nevertheless, possible existence of intrinsic non-trivial states cannot be completely ruled out. Our findings call for further theoretical and experimental studies to explore novel physics on flux-free grown FeSb_2 crystals.