In this study,interface shapes of horizontal oil–water two-phase flow are predicted by using Young-Laplace equation model and minimum energy model.Meanwhile,the interface shapes of horizontal oil–water twophase flow...In this study,interface shapes of horizontal oil–water two-phase flow are predicted by using Young-Laplace equation model and minimum energy model.Meanwhile,the interface shapes of horizontal oil–water twophase flow in a 20 mm inner diameter pipe are measured by a novel conductance parallel-wire array probe(CPAP).It is found that,for flow conditions with low water holdup,there is a large deviation between the model-predicted interface shape and the experimentally measured one.Since the variation of pipe wetting characteristics in the process of fluid flow can lead to the changes of the contact angle between the fluid and the pipe wall,the models mentioned above are modified by considering dynamic contact angle.The results indicate that the interface shapes predicted by the modified models present a good consistence with the ones measured by CPAP.展开更多
Discrete curves are composed of a set of ordered discrete points distributed at the intersection of the scanning plane and the surface of the object. In order to accurately calculate the geometric characteristics of a...Discrete curves are composed of a set of ordered discrete points distributed at the intersection of the scanning plane and the surface of the object. In order to accurately calculate the geometric characteristics of any point on the discrete curve, a distance-based Gaussian weighted algorithm is proposed to estimate the geometric characteristics of three-dimensional space discrete curves. According to the definition of discrete derivatives, the algorithm fully considers the relative position difference between a specific point and its neighboring points, introduces the distance weighting idea, and integrates the smoothing strategy. The experiment uses two spatial discrete curves for uniform and non-uniform sampling, and compares them with two commonly used estimation algorithms. The comparative analysis is carried out in terms of sampling density, neighborhood radius and noise resistance. The experimental results show that the Gaussian distance weighted algorithm is effective and provides an efficient algorithm for underground pipeline safety detection.展开更多
Mercury intrusion porosimetry(MIP)is a simple and fast way to obtain the pore distribution of soil and can be used to estimate the soil-water characteristic curve(SWCC).In previous studies,soil was assumed to be a per...Mercury intrusion porosimetry(MIP)is a simple and fast way to obtain the pore distribution of soil and can be used to estimate the soil-water characteristic curve(SWCC).In previous studies,soil was assumed to be a perfect wettability material,and the contact angle(CA)of the soil-water interface was taken as zero in the SWCC prediction method.However,the CA has proved to be much greater than zero even for hydrophilic soils according to some soil wettability experiments,and it has a significant effect on predicting the SWCC.In this research,a method for predicting the SWCC by MIP,which takes the CA as a fitting coefficient,is proposed.The pore size distribution curves are measured by MIP,and the SWCCs of two loess soils are measured by pressure plate and filter paper tests.When the CA is taken as70°and 50°for the wetting and drying process,respectively,the SWCCs predicted by the pore size distribution curves agree well with the measured SWCCs.The predicted suction range of the proposed method is 0-105 k Pa.The consistency of the results suggests that utilizing the MIP test to predict the SWCC with a proper CA is effective for loess.展开更多
A new method is proposed for slope optimization design based on the limit curve method, where the slope is in the limit equilibrium state when the limit slope curve determined by the slip-line field theory and the slo...A new method is proposed for slope optimization design based on the limit curve method, where the slope is in the limit equilibrium state when the limit slope curve determined by the slip-line field theory and the slope intersect at the toe of the slope. Compared with the strength reduction (SR) method, finite element limit analysis method, and the SR method based on Davis algorithm, the new method is suitable for determining the slope stability and limit slope angle (LSA). The optimal slope shape is determined based on a series of slope heights and LSA values, which increases the LSA by 2.45°-11.14° and reduces an invalid overburden amount of rocks by 9.15%, compared with the space mechanics theory. The proposed method gives the objective quantification index of instability criterion, and results in a significant engineering economy.展开更多
In order to study the pressure characteristics of slug flow in horizontal curved tubes,two kinds of curved tubes with central angle 45° and 90° respectively are studied,of which are with 0. 5m circumference ...In order to study the pressure characteristics of slug flow in horizontal curved tubes,two kinds of curved tubes with central angle 45° and 90° respectively are studied,of which are with 0. 5m circumference and 26 mm inner diameter are used. When the superficial liquid velocity or the superficial gas velocity is constant,the pressure fluctuations and the probability distribution of the average velocity of slug flow are clear for all of the five experimental conditions. The results of experiment show that the pressure characteristics of slug flow in curved tubes have periodic fluctuations. With the rise of central angle,the period of pressure fluctuation is more obvious. The system pressure of the slug flow increases with the increasing of superficial liquid/gas velocity. Meanwhile,the probability distribution of pressure signal shows regularity,such as unimodal,bimodal or multimodal.展开更多
In order to study the applicability of different light response models to the photoresponse curves of four species of Chamaenerion, four species of Chamaenerion collected from Serzilla were used as test materials. Fou...In order to study the applicability of different light response models to the photoresponse curves of four species of Chamaenerion, four species of Chamaenerion collected from Serzilla were used as test materials. Four common photosynthetic models were used to fit the photosynthetic response curve of the leaves. The results show that: 1) The effect of different photosynthetic response models on photosynthetic response curve of the genus chromasia was different. The fitted value of the correction model of right angled hyperbola was closest to the measured value, the R2 was 0.998, and RE was 0.216. 2) In terms of fitting the photosynthetic parameters, the initial quantum efficiency, light compensation point and dark respiration rate were suitable for fitting with non-right angle hyperbolic model. In terms of fitting the photosynthetic parameters, the initial quantum efficiency, light compensation point and dark respiration rate were suitable for fitting with non-right angle hyperbolic model. 3) The photosynthetic characteristics of C. angustifolium subsp. circumvagum reflect the negative response to high altitude radiation. Under strong radiation, the photosynthetic rate, apparent quantum efficiency, and light saturation point are low. On the other hand, C. conspersum has a positive response to high altitude radiation. C. angustifolium and C. latifolium has a higher light compensation point and higher light saturation point, but it is also positive for high altitude radiation. The response is only a choice of light intensity at different elevations, which also explains the distribution of C. angustifolium and C. latifolium in the salmonella with a single elevation, habitat, and slope.展开更多
To investigate the deformation mechanisms of rock under hydrostatic stress, destructive experiments were conducted on sandstone under different levels of hydrostatic stress and stress Lode angles. The results reveal t...To investigate the deformation mechanisms of rock under hydrostatic stress, destructive experiments were conducted on sandstone under different levels of hydrostatic stress and stress Lode angles. The results reveal that the shape of the strength envelope on the π plane gradually changes from the shape of the Lade criterion to the shape of the Drucker-Prage criterion with an increase in hydrostatic stress.Normally, there exists a deviation between the strain and stress paths for porous rocks on the π plane,and the deviation decreases with an increase in stress Lode angle and hydrostatic stress. A rock failure hypothesis based on the rock porous structure was proposed to investigate the reasons for the abovementioned phenomena. It was found that the shear expansion in the minimum principal stress direction is the dominant factor affecting the Lode angle effect(LAE);the magnitude of the hydrostatic stress induces the variation of the porous structure and influences the shear expansion. Therefore, the hydrostatic stress state affects the LAE. The failure hypothesis proposed in this paper can clarify the hydrostatic stress effect, LAE, and the variation of the rock strength envelope shape.展开更多
The maximum seismic response of curved bridge is significantly related to the input angle of designated earthquake. Owing to structure irregularities, bridge reactions result from the interaction between the moment an...The maximum seismic response of curved bridge is significantly related to the input angle of designated earthquake. Owing to structure irregularities, bridge reactions result from the interaction between the moment and torsion forces. Based on the solving of the seismic response of structure excited by a one-way earthquake input, a uniform expression of the unfavorable angle of the earthquake input was derived, and the corresponding maximum response of structure was determined. Considering the orthotropic and skewed dual- directional earthquake input manners, the most unfavorable angles for the two cases were also derived, respectively. Furthermore, a series finite element models were built to analyze the multi-component seismic responses by examining an example of curved girder bridge considering the variation of curvature radius and the bearings arrangement. The seismic responses of the case bridges, were excited by earthquakes at different input angles, and were calculated and analyzed using a response spectrum method. The input angles of earthquake excitation were progressively increased. From the analysis and comparison based on the calculation results mentioned above, the most unfavorable angle of earthquake excitation corresponding to the maximum seismic response of the curved bridge could be determined. It was shown that the most unfavorable angles of earthquake input resulted from the different response combination methods were essentially coherent.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.41974139,41504104,11572220,51527805)Natural Science Foundation of Tianjin,China(19JCYBJC18400)。
文摘In this study,interface shapes of horizontal oil–water two-phase flow are predicted by using Young-Laplace equation model and minimum energy model.Meanwhile,the interface shapes of horizontal oil–water twophase flow in a 20 mm inner diameter pipe are measured by a novel conductance parallel-wire array probe(CPAP).It is found that,for flow conditions with low water holdup,there is a large deviation between the model-predicted interface shape and the experimentally measured one.Since the variation of pipe wetting characteristics in the process of fluid flow can lead to the changes of the contact angle between the fluid and the pipe wall,the models mentioned above are modified by considering dynamic contact angle.The results indicate that the interface shapes predicted by the modified models present a good consistence with the ones measured by CPAP.
文摘Discrete curves are composed of a set of ordered discrete points distributed at the intersection of the scanning plane and the surface of the object. In order to accurately calculate the geometric characteristics of any point on the discrete curve, a distance-based Gaussian weighted algorithm is proposed to estimate the geometric characteristics of three-dimensional space discrete curves. According to the definition of discrete derivatives, the algorithm fully considers the relative position difference between a specific point and its neighboring points, introduces the distance weighting idea, and integrates the smoothing strategy. The experiment uses two spatial discrete curves for uniform and non-uniform sampling, and compares them with two commonly used estimation algorithms. The comparative analysis is carried out in terms of sampling density, neighborhood radius and noise resistance. The experimental results show that the Gaussian distance weighted algorithm is effective and provides an efficient algorithm for underground pipeline safety detection.
基金supported by the National Natural Science Foundation of China(Program No.41790442 and No.41772278)。
文摘Mercury intrusion porosimetry(MIP)is a simple and fast way to obtain the pore distribution of soil and can be used to estimate the soil-water characteristic curve(SWCC).In previous studies,soil was assumed to be a perfect wettability material,and the contact angle(CA)of the soil-water interface was taken as zero in the SWCC prediction method.However,the CA has proved to be much greater than zero even for hydrophilic soils according to some soil wettability experiments,and it has a significant effect on predicting the SWCC.In this research,a method for predicting the SWCC by MIP,which takes the CA as a fitting coefficient,is proposed.The pore size distribution curves are measured by MIP,and the SWCCs of two loess soils are measured by pressure plate and filter paper tests.When the CA is taken as70°and 50°for the wetting and drying process,respectively,the SWCCs predicted by the pore size distribution curves agree well with the measured SWCCs.The predicted suction range of the proposed method is 0-105 k Pa.The consistency of the results suggests that utilizing the MIP test to predict the SWCC with a proper CA is effective for loess.
基金Project(JJKH20180450KJ)supported by Education Department of Jilin Province,ChinaProject(20166008)supported by the Science and Technology Bureau of Jilin Province,China
文摘A new method is proposed for slope optimization design based on the limit curve method, where the slope is in the limit equilibrium state when the limit slope curve determined by the slip-line field theory and the slope intersect at the toe of the slope. Compared with the strength reduction (SR) method, finite element limit analysis method, and the SR method based on Davis algorithm, the new method is suitable for determining the slope stability and limit slope angle (LSA). The optimal slope shape is determined based on a series of slope heights and LSA values, which increases the LSA by 2.45°-11.14° and reduces an invalid overburden amount of rocks by 9.15%, compared with the space mechanics theory. The proposed method gives the objective quantification index of instability criterion, and results in a significant engineering economy.
基金Supported by the National Natural Science Foundation of China(No.5130416)
文摘In order to study the pressure characteristics of slug flow in horizontal curved tubes,two kinds of curved tubes with central angle 45° and 90° respectively are studied,of which are with 0. 5m circumference and 26 mm inner diameter are used. When the superficial liquid velocity or the superficial gas velocity is constant,the pressure fluctuations and the probability distribution of the average velocity of slug flow are clear for all of the five experimental conditions. The results of experiment show that the pressure characteristics of slug flow in curved tubes have periodic fluctuations. With the rise of central angle,the period of pressure fluctuation is more obvious. The system pressure of the slug flow increases with the increasing of superficial liquid/gas velocity. Meanwhile,the probability distribution of pressure signal shows regularity,such as unimodal,bimodal or multimodal.
文摘In order to study the applicability of different light response models to the photoresponse curves of four species of Chamaenerion, four species of Chamaenerion collected from Serzilla were used as test materials. Four common photosynthetic models were used to fit the photosynthetic response curve of the leaves. The results show that: 1) The effect of different photosynthetic response models on photosynthetic response curve of the genus chromasia was different. The fitted value of the correction model of right angled hyperbola was closest to the measured value, the R2 was 0.998, and RE was 0.216. 2) In terms of fitting the photosynthetic parameters, the initial quantum efficiency, light compensation point and dark respiration rate were suitable for fitting with non-right angle hyperbolic model. In terms of fitting the photosynthetic parameters, the initial quantum efficiency, light compensation point and dark respiration rate were suitable for fitting with non-right angle hyperbolic model. 3) The photosynthetic characteristics of C. angustifolium subsp. circumvagum reflect the negative response to high altitude radiation. Under strong radiation, the photosynthetic rate, apparent quantum efficiency, and light saturation point are low. On the other hand, C. conspersum has a positive response to high altitude radiation. C. angustifolium and C. latifolium has a higher light compensation point and higher light saturation point, but it is also positive for high altitude radiation. The response is only a choice of light intensity at different elevations, which also explains the distribution of C. angustifolium and C. latifolium in the salmonella with a single elevation, habitat, and slope.
文摘To investigate the deformation mechanisms of rock under hydrostatic stress, destructive experiments were conducted on sandstone under different levels of hydrostatic stress and stress Lode angles. The results reveal that the shape of the strength envelope on the π plane gradually changes from the shape of the Lade criterion to the shape of the Drucker-Prage criterion with an increase in hydrostatic stress.Normally, there exists a deviation between the strain and stress paths for porous rocks on the π plane,and the deviation decreases with an increase in stress Lode angle and hydrostatic stress. A rock failure hypothesis based on the rock porous structure was proposed to investigate the reasons for the abovementioned phenomena. It was found that the shear expansion in the minimum principal stress direction is the dominant factor affecting the Lode angle effect(LAE);the magnitude of the hydrostatic stress induces the variation of the porous structure and influences the shear expansion. Therefore, the hydrostatic stress state affects the LAE. The failure hypothesis proposed in this paper can clarify the hydrostatic stress effect, LAE, and the variation of the rock strength envelope shape.
基金supported by the National Natural Science Foundation of China(No.51378050)China Scholarship Council(No.201307095008)
文摘The maximum seismic response of curved bridge is significantly related to the input angle of designated earthquake. Owing to structure irregularities, bridge reactions result from the interaction between the moment and torsion forces. Based on the solving of the seismic response of structure excited by a one-way earthquake input, a uniform expression of the unfavorable angle of the earthquake input was derived, and the corresponding maximum response of structure was determined. Considering the orthotropic and skewed dual- directional earthquake input manners, the most unfavorable angles for the two cases were also derived, respectively. Furthermore, a series finite element models were built to analyze the multi-component seismic responses by examining an example of curved girder bridge considering the variation of curvature radius and the bearings arrangement. The seismic responses of the case bridges, were excited by earthquakes at different input angles, and were calculated and analyzed using a response spectrum method. The input angles of earthquake excitation were progressively increased. From the analysis and comparison based on the calculation results mentioned above, the most unfavorable angle of earthquake excitation corresponding to the maximum seismic response of the curved bridge could be determined. It was shown that the most unfavorable angles of earthquake input resulted from the different response combination methods were essentially coherent.