As the most northerly mangrove species in China, Kandelia obovata may undergo extreme cold event stress. Enhancing the cold tolerance of this species is crucial to its successful afforestation. This study aimed to det...As the most northerly mangrove species in China, Kandelia obovata may undergo extreme cold event stress. Enhancing the cold tolerance of this species is crucial to its successful afforestation. This study aimed to determine the resistance of K. obovata seedlings to low temperature stress by cold acclimation and to explain the mechanisms for alleviating cold injury. To understand these mechanisms, seedlings that were acclimatized and not acclimatized were exposed to 5℃/- 2℃(day/night)for 48 h.Results showed that low temperature stress reduced leaf photosynthesis of non-acclimatized seedlings by inducing oxidative stress and structural damage to chloroplasts. These phenomena were shown by increasing levels of malondialdehyde (MDA), O2-and H2O2, as well as decreasing enzyme activities in the ascorbate–glutathione (AsA-GSH) cycle. However, cold-acclimatized seedlings had improved photosynthetic rates and efficiency of photosystem II (PSII) under low temperature stress. Compared with non-acclimatized seedlings, leaves of coldacclimatized seedlings under low temperature stress for 48 h exhibited higher anti-oxidative enzyme activities, lower levels of O2^- and H2O2, less damage to chloroplast structure, and removed 33.7% of MDA at low temperature stress for 48 h. The data indicate that cold acclimation enhances photosynthetic capacity by effectively regulating activation in the PSII electron transport and the AsA–GSH cycle to scavenge excess ROS in chloroplasts, while the latter is more important.展开更多
Mangrove forests are vulnerably threatened by sea level rise(SLR).Vegetation organic carbon(OC)stocks are important for mangrove ecosystem carbon cycle.It is critical to understand how SLR affects vegetation OC stocks...Mangrove forests are vulnerably threatened by sea level rise(SLR).Vegetation organic carbon(OC)stocks are important for mangrove ecosystem carbon cycle.It is critical to understand how SLR affects vegetation OC stocks for evaluating mangrove blue carbon budget and global climate change.In this study,biomass accumulation and OC stocks of mangrove vegetation were compared among three 10 year-old Kandelia obovata(a common species in China)mangrove forests under three intertidal elevations through species-specific allometric equations.This study simulated mangrove forests with SLR values of 0 cm,40 cm and 80 cm,respectively,representing for the current,future~100 a and future~200 a SLR of mangrove forests along the Jiulong River Estuary,China.SLR directly decreased mangrove individual density and inhibited the growth of mangrove vegetation.The total vegetation biomasses were(12.86±0.95)kg/m^2,(7.97±0.90)kg/m^2 and(3.89±0.63)kg/m^2 at Sites SLR 0 cm,SLR40 cm and SLR 80 cm,respectively.The total vegetation OC stock decreased by approximately 3.85 kg/m^2(in terms of C)from Site SLR 0 cm to Site SLR 80 cm.Significantly lower vegetation biomass and OC stock of various components(stem,branch,leaf and root)were found at Site SLR 80 cm.Annual increments of vegetation biomass and OC stock also decreased with SLR increase.Moreover,significant lower sedimentation rate was found at Site SLR 80 cm.These indicated that SLR will decrease mangrove vegetation biomass and OC stock,which may reduce global blue carbon sink by mangroves,exacerbate global warming and give positive feedback to SLR.展开更多
为了探讨秋茄(Kandelia obovata Sheue et al.)次生木质部的形态解剖和数量解剖特征变化对不同红树林生境的生态适应意义,采用光学显微镜(LM)、扫描电镜(SEM)、透射电镜(TEM)和激光共聚焦显微镜(LSCM)对深圳福田红树林自然保护区内7个...为了探讨秋茄(Kandelia obovata Sheue et al.)次生木质部的形态解剖和数量解剖特征变化对不同红树林生境的生态适应意义,采用光学显微镜(LM)、扫描电镜(SEM)、透射电镜(TEM)和激光共聚焦显微镜(LSCM)对深圳福田红树林自然保护区内7个秋茄种群的次生木质部解剖特征进行观测,并对种群样地的土壤盐分含量、pH值和土壤养分含量进行测定。结果显示,(1)7个秋茄种群的次生木质部具有一些共同形态解剖特征:具纤维状导管和环管管胞;许多导管壁的微观结构(如管壁附物、穿孔板附物和螺旋雕纹等)有利于提高水分输导的高效性和安全性,以适应潮间带生境;(2)应用逐步回归分析法对秋茄次生木质部数量解剖特征和土壤理化因子的关系进行分析发现,随着土壤Na+、土壤全盐量增高,秋茄次生木质部导管分子趋向于"大型化"。"大型化"导管有利于水分输导,但降低了安全性。在土壤盐离子含量越高、秋茄导管分子越大其水分输导安全性越低的情况下,推测可能有其它机制保证秋茄导管水分输导的安全性。展开更多
基金supported by Zhejiang Provincial Natural Science Foundation of China(Grant Nos.LY18C030001 and LQ13C030002)National Natural Science Foundation of China(Grant No.41776097)+4 种基金Special Funding for Research of National Oceanic Public Service Industry of China(Grant No.201505028)National Science and Technology Basic Resources Survey Special of China(Grant No.2017FY100700)Zhejiang Province Science and Technology Plan Project of China(Grant Nos.2013C25096 and2014F50003)Zhejiang Province Foundation of the Nonprofit Technology Research Projects of China(Grant No.2015C33227)Wenzhou Municipal Science and Technology Plan Project of China(Grant Nos.N20140046,N20170008 and S20160004)
文摘As the most northerly mangrove species in China, Kandelia obovata may undergo extreme cold event stress. Enhancing the cold tolerance of this species is crucial to its successful afforestation. This study aimed to determine the resistance of K. obovata seedlings to low temperature stress by cold acclimation and to explain the mechanisms for alleviating cold injury. To understand these mechanisms, seedlings that were acclimatized and not acclimatized were exposed to 5℃/- 2℃(day/night)for 48 h.Results showed that low temperature stress reduced leaf photosynthesis of non-acclimatized seedlings by inducing oxidative stress and structural damage to chloroplasts. These phenomena were shown by increasing levels of malondialdehyde (MDA), O2-and H2O2, as well as decreasing enzyme activities in the ascorbate–glutathione (AsA-GSH) cycle. However, cold-acclimatized seedlings had improved photosynthetic rates and efficiency of photosystem II (PSII) under low temperature stress. Compared with non-acclimatized seedlings, leaves of coldacclimatized seedlings under low temperature stress for 48 h exhibited higher anti-oxidative enzyme activities, lower levels of O2^- and H2O2, less damage to chloroplast structure, and removed 33.7% of MDA at low temperature stress for 48 h. The data indicate that cold acclimation enhances photosynthetic capacity by effectively regulating activation in the PSII electron transport and the AsA–GSH cycle to scavenge excess ROS in chloroplasts, while the latter is more important.
基金The National Natural Science Foundation of China under contract Nos 41776097 and 42076142the Scientific Research Foundation of Third Institute of Oceanography,Ministry of Natural Resources under contract No.2019017the Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration under contract No.EPR2020003。
文摘Mangrove forests are vulnerably threatened by sea level rise(SLR).Vegetation organic carbon(OC)stocks are important for mangrove ecosystem carbon cycle.It is critical to understand how SLR affects vegetation OC stocks for evaluating mangrove blue carbon budget and global climate change.In this study,biomass accumulation and OC stocks of mangrove vegetation were compared among three 10 year-old Kandelia obovata(a common species in China)mangrove forests under three intertidal elevations through species-specific allometric equations.This study simulated mangrove forests with SLR values of 0 cm,40 cm and 80 cm,respectively,representing for the current,future~100 a and future~200 a SLR of mangrove forests along the Jiulong River Estuary,China.SLR directly decreased mangrove individual density and inhibited the growth of mangrove vegetation.The total vegetation biomasses were(12.86±0.95)kg/m^2,(7.97±0.90)kg/m^2 and(3.89±0.63)kg/m^2 at Sites SLR 0 cm,SLR40 cm and SLR 80 cm,respectively.The total vegetation OC stock decreased by approximately 3.85 kg/m^2(in terms of C)from Site SLR 0 cm to Site SLR 80 cm.Significantly lower vegetation biomass and OC stock of various components(stem,branch,leaf and root)were found at Site SLR 80 cm.Annual increments of vegetation biomass and OC stock also decreased with SLR increase.Moreover,significant lower sedimentation rate was found at Site SLR 80 cm.These indicated that SLR will decrease mangrove vegetation biomass and OC stock,which may reduce global blue carbon sink by mangroves,exacerbate global warming and give positive feedback to SLR.
文摘为了探讨秋茄(Kandelia obovata Sheue et al.)次生木质部的形态解剖和数量解剖特征变化对不同红树林生境的生态适应意义,采用光学显微镜(LM)、扫描电镜(SEM)、透射电镜(TEM)和激光共聚焦显微镜(LSCM)对深圳福田红树林自然保护区内7个秋茄种群的次生木质部解剖特征进行观测,并对种群样地的土壤盐分含量、pH值和土壤养分含量进行测定。结果显示,(1)7个秋茄种群的次生木质部具有一些共同形态解剖特征:具纤维状导管和环管管胞;许多导管壁的微观结构(如管壁附物、穿孔板附物和螺旋雕纹等)有利于提高水分输导的高效性和安全性,以适应潮间带生境;(2)应用逐步回归分析法对秋茄次生木质部数量解剖特征和土壤理化因子的关系进行分析发现,随着土壤Na+、土壤全盐量增高,秋茄次生木质部导管分子趋向于"大型化"。"大型化"导管有利于水分输导,但降低了安全性。在土壤盐离子含量越高、秋茄导管分子越大其水分输导安全性越低的情况下,推测可能有其它机制保证秋茄导管水分输导的安全性。