This paper concerns the Log-rank test for comparing survival curves of neonatal mortality characteristic groups in River Nile State, Sudan. In this paper, log-rank test is used to compare two or more survival curves f...This paper concerns the Log-rank test for comparing survival curves of neonatal mortality characteristic groups in River Nile State, Sudan. In this paper, log-rank test is used to compare two or more survival curves for the characteristics of newborn associated with newborn death after using Kaplan-Meier methods to estimate and graph survival curves for the variable of interest as (sex of newborn, weight of newborn, gestational age, mode of delivery and resident type), at the hospital of River Nile state—Sudan, with a sample size 700 of newborn in which the admission to the Neonatal Intensive Care Unit (NICU) of those hospitals during the period 2018-2020. In term of risk of death for newborn we found that 25% of sample study for newborns who were born in River Nile State-Sudan died. In addition, we conclude that after the log-rank statistics and Kaplan-Meier methods were applied, gender does not affect the newborn’s risk of survival, while the risk of survival increases when the birth weight is greater than 4.35 kg and the gestational age is greater than 42 weeks. There is no difference in the probability of survival for newborns whether the delivery is normal or cesarean. However, newborns are significantly more likely to survive in urban areas than in rural areas.展开更多
BACKGROUND Lutetium has been shown to be an important potential innovation in pre-treated metastatic castration-resistant prostate cancer.Two clinical trials have evaluated lutetium thus far(therap and vision with 99 ...BACKGROUND Lutetium has been shown to be an important potential innovation in pre-treated metastatic castration-resistant prostate cancer.Two clinical trials have evaluated lutetium thus far(therap and vision with 99 and 385 patients,respectively),but their results are discordant.AIM To synthetize the available evidence on the effectiveness of lutetium in pre-treated metastatic castration-resistant prostate cancer;and to test the application of a new artificial intelligence technique that synthetizes effectiveness based on reconstructed patient-level data.METHODS We employed a new artificial intelligence method(shiny method)to pool the survival data of these two trials and evaluate to what extent the lutetium cohorts differed from one another.The shiny technique employs an original reconstruction of individual patient data from the Kaplan-Meier curves.The progression-free survival graphs of the two lutetium cohorts were analyzed and compared.RESULTS The hazard ratio estimated was in favor of the vision trial;the difference was statistically significant(P<0.001).These results indicate that further studies on lutetium are needed because the survival data of the two trials published thus far are conflicting.CONCLUSION Our study confirms the feasibility of reconstructing patient-level data from survival graphs in order to generate a survival statistics.展开更多
BACKGROUND Quinine oxidoreductase 1(NQO1)plays a vital role in protecting normal cells against oxidative damage and electrophilic attack.It is highly expressed in many solid tumors,suggesting a role in cancer developm...BACKGROUND Quinine oxidoreductase 1(NQO1)plays a vital role in protecting normal cells against oxidative damage and electrophilic attack.It is highly expressed in many solid tumors,suggesting a role in cancer development and progression.However,the role of NQO1 in gastric cancer and its effect on cancer development and prognosis have not been fully investigated.AIM To investigate the clinical relevance of NQO1 protein expression in gastric cancer and to explore the potential of NQO1 to serve as a prognostic biomarker and therapeutic target.METHODS In this retrospective study,gastric cancer specimens of 175 patients who were treated between 1995 and 2011 were subjected to immunohistochemistry analyses for NQO1.The correlation of NQO1 expression with gastric cancer prognosis and clinical and pathological parameters was investigated.RESULTS NQO1 protein was overexpressed in 59.43%(104/175)of the analyzed samples.Overexpression of NQO1 was associated with a significantly inferior prognosis.In addition,multivariate analysis suggested that NQO1 overexpression,along with tumor stage and patient age,are prominent prognostic biomarkers for gastric cancer.Moreover,NQO1 overexpression was correlated to a better response to 5-fluorouracil(5-FU)-based adjuvant chemotherapy.CONCLUSION NQO1 overexpression is associated with a significantly poor prognosis and better response to 5-FU in patients with gastric cancer.These findings are relevant for improving therapeutic approaches for gastric cancer patients.展开更多
In some clinical applications in oncology randomized, double armed, and double-blind trials are not possible. In case of device applications, double-blinded conditions are nonrealistic, and with many times the randomi...In some clinical applications in oncology randomized, double armed, and double-blind trials are not possible. In case of device applications, double-blinded conditions are nonrealistic, and with many times the randomization also has complications due to the high-line treatments where the reference cohort is not available;the active “arm” has mainly palliative initiative. Sometimes highly personalized therapies block the collection of the homogeneous group and limit its double-arm randomization. Our objective is to discuss the situations of the single arm evaluation and to give methods for the mining of information from this to increase the level of evidence of the measured dataset. The basic idea of the data-separation is the appropriate parameterization of the non-parametric Kaplan-Meier survival pattern by the poly-Weibull fit.展开更多
Survival studies mainly deal with distribution of time to event. Often in such studies researchers are interested in comparing several treatment or prognostic groups. At the time of analysis, there is an unmeasured ch...Survival studies mainly deal with distribution of time to event. Often in such studies researchers are interested in comparing several treatment or prognostic groups. At the time of analysis, there is an unmeasured chance of making type I error, or finding a falsely significant difference between any two groups. The chance of making type I error is increased, if multiple groups are compared simultaneously. In this paper, survival analysis with Bonferroni correction is explained in easy way to cope up with this issue. The DLHS-3 data are taken to explain this methodology in the context of neonatal survival. Kaplan-meier plot with three survival comparison test is used to elaborate the application of Bonferroni correction.展开更多
The Gompertz model is the long-time well-known mathematical model of exponential expression among mortality models in the literature that are used to describe mortality and survival data of a population. The death rat...The Gompertz model is the long-time well-known mathematical model of exponential expression among mortality models in the literature that are used to describe mortality and survival data of a population. The death rate of the “probacent” model developed by the author based on animal experiments, clinical applications and mathematical reasoning was applied to predict age-specific death rates in the US elderly population, 2001, and to express a relationship among dose rate, duration of exposure and mortality probability in total body irradiation in humans. The results of both studies revealed a remarkable agreement between “probacent”-formula-predicted and published-reported values of death rates in the US elderly population or mortality probabilities in total body irradiation in humans (p - value > 0.995 in χ2 test in each study). In this study, both the Gompertz and “probacent” models are applied to the Sacher’s comprehensive experimental data on survival times of mice daily exposed to various doses of total body irradiation until death occurs with an assumption that each of both models is applicable to the data. The purpose of this study is to construct general formulas expressing relationship between dose rate and survival time in total body irradiation in mice. In addition, it is attempted to test which model better fits the reported data. The results of the comparative study revealed that the “probacent” model not only fit the Sacher’s reported data but also remarkably better fit the reported data than the Gompertz model. The “probacent” model might be hopefully helpful in research in human tolerance to low dose rates for long durations of exposure in total body irradiation, and further in research in a variety of biomedical phenomena.展开更多
Lung cancer is one of the leading causes of death worldwide, accounting for an estimated 2.1 million cases in 2018. To analyze the risk factors behind the lung cancer survival, this paper employs two main models: Kapl...Lung cancer is one of the leading causes of death worldwide, accounting for an estimated 2.1 million cases in 2018. To analyze the risk factors behind the lung cancer survival, this paper employs two main models: Kaplan-Meier estimator and Cox proportional hazard model [1]. Also, log-rank test and wald test are utilized to test whether a correlation exists or not, which is discussed in detail in later parts of the paper. The aim is to find out the most influential factors for the survival probability of lung cancer patients. To summarize the results, stage of cancer is always a significant factor for lung cancer survival, and time has to be taken into account when analyzing the survival rate of patients in our data sample, which is from TCGA. Future study on lung cancer is also required to make improvement for the treatment of lung cancer, as our data sample might not represent the overall condition of patients diagnosed with lung cancer;also, more appropriate and advanced models should be employed in order to reflect factors that can affect survival rate of patients with lung cancer in detail.展开更多
In cancer survival analysis, it is very frequently to estimate the confidence intervals for survival probabilities.But this calculation is not commonly involve in most popular computer packages, or only one methods of...In cancer survival analysis, it is very frequently to estimate the confidence intervals for survival probabilities.But this calculation is not commonly involve in most popular computer packages, or only one methods of estimation in the packages. In the present Paper, we will describe a microcomputer Program for estimating the confidence intervals of survival probabilities, when the survival functions are estimated using Kaplan-Meier product-limit or life-table method. There are five methods of estimation in the program (SPCI), which are the classical(based on Greenwood's formula of variance of S(ti), Rothman-Wilson, arcsin transformation, log(-Iog) transformation, Iogit transformation methods. Two example analysis are given for testing the performances of the program running.展开更多
Effects of many medical procedures appear after a time lag, when a significant change occurs in subjects’ failure rate. This paper focuses on the detection and estimation of such changes which is important for the ev...Effects of many medical procedures appear after a time lag, when a significant change occurs in subjects’ failure rate. This paper focuses on the detection and estimation of such changes which is important for the evaluation and comparison of treatments and prediction of their effects. Unlike the classical change-point model, measurements may still be identically distributed, and the change point is a parameter of their common survival function. Some of the classical change-point detection techniques can still be used but the results are different. Contrary to the classical model, the maximum likelihood estimator of a change point appears consistent, even in presence of nuisance parameters. However, a more efficient procedure can be derived from Kaplan-Meier estimation of the survival function followed by the least-squares estimation of the change point. Strong consistency of these estimation schemes is proved. The finite-sample properties are examined by a Monte Carlo study. Proposed methods are applied to a recent clinical trial of the treatment program for strong drug dependence.展开更多
This paper worked on a sample of 6791 logistics establishments registered in Chengdu, China over the period 1984-2016 to understand the survival status of </span><span style="font-family:Verdana;"&g...This paper worked on a sample of 6791 logistics establishments registered in Chengdu, China over the period 1984-2016 to understand the survival status of </span><span style="font-family:Verdana;">logistics service providers (LSPs) by non-parametric Kaplan-Meier estimation, together with Cox proportional hazard regression model, to identify factors affecting the failure of LSPs. In particular, it studies the interaction effect between LSPs’ size and entry timing and location. The empirical results show that: 1) Regarding the survival time, 1365 of the 6791 sample LSPs exited from the market by 2017. The exit rate is 20.1%, and the average life of the 6791 LSPs is about 6 years. 2) The survival of LSPs depends on their typology, ownership structure. And there is no significant difference in the probability of survival for both independent LSPs and logistics branches after controlling the effects of other variables. 3) Location and entry timing also play an important role in the survival of small-scale LSPs, but these factors cannot explain large-scale LSPs’ failure.展开更多
Cox Proportional Hazard model is a popular statistical technique for exploring the relationship between the survival time of neonates and several explanatory variables. It provides an estimate of the study variables’...Cox Proportional Hazard model is a popular statistical technique for exploring the relationship between the survival time of neonates and several explanatory variables. It provides an estimate of the study variables’ effect on survival after adjustment for other explanatory variables, and allows us to estimate the hazard (or risk) of death of newborn in NICU of hospitals in River Nile State-Sudan for the period (2018-2020). Study Data represented (neonate gender, mode of delivery, birth type, neonate weight, resident type, gestational age, and survival time). Kaplan-Meier method is used to estimate survival and hazard function for survival times of newborns that have not completed their first month. Of 700 neonates in the study area, 25% of them died during 2018-2020. Variables of interest that had a significant effect on neonatal death by Cox Proportional Hazard Model analysis were neonate weight, resident type, and gestational age. In Cox Proportional Hazard Model analysis all the variables of interest had an effect on neonatal death, but the variables with a significant effect included, weight of neonate, resident type and gestational age.展开更多
Breast cancer is one of the leading diseases that affect women’s lives. It affects their lives in so many ways by denying them the required standard of health needed to carry out all of their daily activities for som...Breast cancer is one of the leading diseases that affect women’s lives. It affects their lives in so many ways by denying them the required standard of health needed to carry out all of their daily activities for some days, weeks, months or years before eventually causing death. This research estimates the survival rate of breast cancer patients and investigates the effects of stage of tumor, gender, age, ethnic group, occupation, marital status and type of cancer upon the survival of patients. Data used for the study were extracted from the case file of patients in the Radiation Oncology Department, University College Hospital, Ibadan using a well-structured pro forma in which 74 observations were censored and 30 events occurred. The Kaplan-Meier estimator was used to estimate the overall survival probability of breast cancer patients following their recruitment into the study and determine the mean and median survival times of breast cancer patients following their time of recruitment into the study. Since there are different groups with respect to the stages of tumor at the time of diagnosis, the log-rank test was used to compare the survival curve of the stages of tumor with considering p-values below 0.05 as statistically significant. Multivariate Cox regression was used to investigate the effects of some variables on the survival of patients. The overall cumulative survival probability obtained is 0.175 (17.5%). The overall estimated mean time until death is 28.751 weeks while the median time between admission and death is 23 weeks. As the p-value (0.000032) of the log-rank test for comparing stages of tumor is less than 0.05, it is concluded that there is significant evidence of a difference in survival times for the stages of tumor. The survival function plot for the stages of tumor shows that patients with stage III tumor are less likely to survive. From the estimated mean time until death for the stages of tumor, it was deduced that stage I tumor patients have an increased chance of survival. Types of cancer, gender, marital status, ethnic group, occupation and patient’s age at entry into the study are not important predictors of chances of survival.展开更多
Juvenile survival is a key life-history influence on population dynamics and adaptive evolution.We analyzed the effects of individual chara-cteristics,early environment,and maternal investment on juvenile survival in ...Juvenile survival is a key life-history influence on population dynamics and adaptive evolution.We analyzed the effects of individual chara-cteristics,early environment,and maternal investment on juvenile survival in a large solitary hibernating rodent-yellow ground squirrel Spermophilus fulvus using Cox mixed-effects models.Only 48%of weaned pups survived to dispersal and 17%survived to hibernation.Early life expectancy was primarily determined by individual characteristics and,to a lesser extent,by the early environment.The strongest and pos-itive predictor of juvenile survival was body mass which crucially affected mortality immediately after weaning.Males suffered higher mortality than females after the onset of dispersal;however,the overall difference between sexes was partly masked by high rates of mortality in the first days after emergence in both sexes.Later emerged juveniles had lower life expectancy than the earliest pups.The overall effect of local juvenile density was positive.Prolonged lactation did not enhance juvenile survival:Pups nursed longer survived shorter than the young nursed for a shorter period.Our findings support the hypothesis that females of S.fulvus cannot effectively regulate maternal expenditures to mitigate the effects of unfavorable conditions on their offspring.The strategy to deal with seasonal time constraints on life history in female S.fulvus suggests an early termination of maternal care at the cost of juvenile quality and survival.This female reproductive strategy corresponds to a"fast-solitary"life of folivorous desert-dwelling S.fulvus and other solitary ground squirrels with prolonged hibernation.展开更多
On the basis of experimental observations on animals, applications to clinical data on patients and theoretical statistical reasoning, the author developed a com-puter-assisted general mathematical model of the ‘prob...On the basis of experimental observations on animals, applications to clinical data on patients and theoretical statistical reasoning, the author developed a com-puter-assisted general mathematical model of the ‘probacent’-probability equation, Equation (1) and death rate (mortality probability) equation, Equation (2) derivable from Equation (1) that may be applica-ble as a general approximation method to make use-ful predictions of probable outcomes in a variety of biomedical phenomena [1-4]. Equations (1) and (2) contain a constant, γ and c, respectively. In the pre-vious studies, the author used the least maximum- difference principle to determine these constants that were expected to best fit reported data, minimizing the deviation. In this study, the author uses the method of computer-assisted least sum of squares to determine the constants, γ and c in constructing the ‘probacent’-related formulas best fitting the NCHS- reported data on survival probabilities and death rates in the US total adult population for 2001. The results of this study reveal that the method of com-puter-assisted mathematical analysis with the least sum of squares seems to be simple, more accurate, convenient and preferable than the previously used least maximum-difference principle, and better fit-ting the NCHS-reported data on survival probabili-ties and death rates in the US total adult population. The computer program of curved regression for the ‘probacent’-probability and death rate equations may be helpful in research in biomedicine.展开更多
文摘This paper concerns the Log-rank test for comparing survival curves of neonatal mortality characteristic groups in River Nile State, Sudan. In this paper, log-rank test is used to compare two or more survival curves for the characteristics of newborn associated with newborn death after using Kaplan-Meier methods to estimate and graph survival curves for the variable of interest as (sex of newborn, weight of newborn, gestational age, mode of delivery and resident type), at the hospital of River Nile state—Sudan, with a sample size 700 of newborn in which the admission to the Neonatal Intensive Care Unit (NICU) of those hospitals during the period 2018-2020. In term of risk of death for newborn we found that 25% of sample study for newborns who were born in River Nile State-Sudan died. In addition, we conclude that after the log-rank statistics and Kaplan-Meier methods were applied, gender does not affect the newborn’s risk of survival, while the risk of survival increases when the birth weight is greater than 4.35 kg and the gestational age is greater than 42 weeks. There is no difference in the probability of survival for newborns whether the delivery is normal or cesarean. However, newborns are significantly more likely to survive in urban areas than in rural areas.
文摘BACKGROUND Lutetium has been shown to be an important potential innovation in pre-treated metastatic castration-resistant prostate cancer.Two clinical trials have evaluated lutetium thus far(therap and vision with 99 and 385 patients,respectively),but their results are discordant.AIM To synthetize the available evidence on the effectiveness of lutetium in pre-treated metastatic castration-resistant prostate cancer;and to test the application of a new artificial intelligence technique that synthetizes effectiveness based on reconstructed patient-level data.METHODS We employed a new artificial intelligence method(shiny method)to pool the survival data of these two trials and evaluate to what extent the lutetium cohorts differed from one another.The shiny technique employs an original reconstruction of individual patient data from the Kaplan-Meier curves.The progression-free survival graphs of the two lutetium cohorts were analyzed and compared.RESULTS The hazard ratio estimated was in favor of the vision trial;the difference was statistically significant(P<0.001).These results indicate that further studies on lutetium are needed because the survival data of the two trials published thus far are conflicting.CONCLUSION Our study confirms the feasibility of reconstructing patient-level data from survival graphs in order to generate a survival statistics.
基金Supported by the National Natural Science Foundation of China,No.31971188 and No.81773189the Nature Science Foundation of Zhejiang Province,China,No.LQ16H160004 and No.LY17H270002The Hygiene Department of Zhejiang,No.2016KYB139.
文摘BACKGROUND Quinine oxidoreductase 1(NQO1)plays a vital role in protecting normal cells against oxidative damage and electrophilic attack.It is highly expressed in many solid tumors,suggesting a role in cancer development and progression.However,the role of NQO1 in gastric cancer and its effect on cancer development and prognosis have not been fully investigated.AIM To investigate the clinical relevance of NQO1 protein expression in gastric cancer and to explore the potential of NQO1 to serve as a prognostic biomarker and therapeutic target.METHODS In this retrospective study,gastric cancer specimens of 175 patients who were treated between 1995 and 2011 were subjected to immunohistochemistry analyses for NQO1.The correlation of NQO1 expression with gastric cancer prognosis and clinical and pathological parameters was investigated.RESULTS NQO1 protein was overexpressed in 59.43%(104/175)of the analyzed samples.Overexpression of NQO1 was associated with a significantly inferior prognosis.In addition,multivariate analysis suggested that NQO1 overexpression,along with tumor stage and patient age,are prominent prognostic biomarkers for gastric cancer.Moreover,NQO1 overexpression was correlated to a better response to 5-fluorouracil(5-FU)-based adjuvant chemotherapy.CONCLUSION NQO1 overexpression is associated with a significantly poor prognosis and better response to 5-FU in patients with gastric cancer.These findings are relevant for improving therapeutic approaches for gastric cancer patients.
文摘In some clinical applications in oncology randomized, double armed, and double-blind trials are not possible. In case of device applications, double-blinded conditions are nonrealistic, and with many times the randomization also has complications due to the high-line treatments where the reference cohort is not available;the active “arm” has mainly palliative initiative. Sometimes highly personalized therapies block the collection of the homogeneous group and limit its double-arm randomization. Our objective is to discuss the situations of the single arm evaluation and to give methods for the mining of information from this to increase the level of evidence of the measured dataset. The basic idea of the data-separation is the appropriate parameterization of the non-parametric Kaplan-Meier survival pattern by the poly-Weibull fit.
文摘Survival studies mainly deal with distribution of time to event. Often in such studies researchers are interested in comparing several treatment or prognostic groups. At the time of analysis, there is an unmeasured chance of making type I error, or finding a falsely significant difference between any two groups. The chance of making type I error is increased, if multiple groups are compared simultaneously. In this paper, survival analysis with Bonferroni correction is explained in easy way to cope up with this issue. The DLHS-3 data are taken to explain this methodology in the context of neonatal survival. Kaplan-meier plot with three survival comparison test is used to elaborate the application of Bonferroni correction.
文摘The Gompertz model is the long-time well-known mathematical model of exponential expression among mortality models in the literature that are used to describe mortality and survival data of a population. The death rate of the “probacent” model developed by the author based on animal experiments, clinical applications and mathematical reasoning was applied to predict age-specific death rates in the US elderly population, 2001, and to express a relationship among dose rate, duration of exposure and mortality probability in total body irradiation in humans. The results of both studies revealed a remarkable agreement between “probacent”-formula-predicted and published-reported values of death rates in the US elderly population or mortality probabilities in total body irradiation in humans (p - value > 0.995 in χ2 test in each study). In this study, both the Gompertz and “probacent” models are applied to the Sacher’s comprehensive experimental data on survival times of mice daily exposed to various doses of total body irradiation until death occurs with an assumption that each of both models is applicable to the data. The purpose of this study is to construct general formulas expressing relationship between dose rate and survival time in total body irradiation in mice. In addition, it is attempted to test which model better fits the reported data. The results of the comparative study revealed that the “probacent” model not only fit the Sacher’s reported data but also remarkably better fit the reported data than the Gompertz model. The “probacent” model might be hopefully helpful in research in human tolerance to low dose rates for long durations of exposure in total body irradiation, and further in research in a variety of biomedical phenomena.
文摘Lung cancer is one of the leading causes of death worldwide, accounting for an estimated 2.1 million cases in 2018. To analyze the risk factors behind the lung cancer survival, this paper employs two main models: Kaplan-Meier estimator and Cox proportional hazard model [1]. Also, log-rank test and wald test are utilized to test whether a correlation exists or not, which is discussed in detail in later parts of the paper. The aim is to find out the most influential factors for the survival probability of lung cancer patients. To summarize the results, stage of cancer is always a significant factor for lung cancer survival, and time has to be taken into account when analyzing the survival rate of patients in our data sample, which is from TCGA. Future study on lung cancer is also required to make improvement for the treatment of lung cancer, as our data sample might not represent the overall condition of patients diagnosed with lung cancer;also, more appropriate and advanced models should be employed in order to reflect factors that can affect survival rate of patients with lung cancer in detail.
文摘In cancer survival analysis, it is very frequently to estimate the confidence intervals for survival probabilities.But this calculation is not commonly involve in most popular computer packages, or only one methods of estimation in the packages. In the present Paper, we will describe a microcomputer Program for estimating the confidence intervals of survival probabilities, when the survival functions are estimated using Kaplan-Meier product-limit or life-table method. There are five methods of estimation in the program (SPCI), which are the classical(based on Greenwood's formula of variance of S(ti), Rothman-Wilson, arcsin transformation, log(-Iog) transformation, Iogit transformation methods. Two example analysis are given for testing the performances of the program running.
文摘Effects of many medical procedures appear after a time lag, when a significant change occurs in subjects’ failure rate. This paper focuses on the detection and estimation of such changes which is important for the evaluation and comparison of treatments and prediction of their effects. Unlike the classical change-point model, measurements may still be identically distributed, and the change point is a parameter of their common survival function. Some of the classical change-point detection techniques can still be used but the results are different. Contrary to the classical model, the maximum likelihood estimator of a change point appears consistent, even in presence of nuisance parameters. However, a more efficient procedure can be derived from Kaplan-Meier estimation of the survival function followed by the least-squares estimation of the change point. Strong consistency of these estimation schemes is proved. The finite-sample properties are examined by a Monte Carlo study. Proposed methods are applied to a recent clinical trial of the treatment program for strong drug dependence.
文摘This paper worked on a sample of 6791 logistics establishments registered in Chengdu, China over the period 1984-2016 to understand the survival status of </span><span style="font-family:Verdana;">logistics service providers (LSPs) by non-parametric Kaplan-Meier estimation, together with Cox proportional hazard regression model, to identify factors affecting the failure of LSPs. In particular, it studies the interaction effect between LSPs’ size and entry timing and location. The empirical results show that: 1) Regarding the survival time, 1365 of the 6791 sample LSPs exited from the market by 2017. The exit rate is 20.1%, and the average life of the 6791 LSPs is about 6 years. 2) The survival of LSPs depends on their typology, ownership structure. And there is no significant difference in the probability of survival for both independent LSPs and logistics branches after controlling the effects of other variables. 3) Location and entry timing also play an important role in the survival of small-scale LSPs, but these factors cannot explain large-scale LSPs’ failure.
文摘Cox Proportional Hazard model is a popular statistical technique for exploring the relationship between the survival time of neonates and several explanatory variables. It provides an estimate of the study variables’ effect on survival after adjustment for other explanatory variables, and allows us to estimate the hazard (or risk) of death of newborn in NICU of hospitals in River Nile State-Sudan for the period (2018-2020). Study Data represented (neonate gender, mode of delivery, birth type, neonate weight, resident type, gestational age, and survival time). Kaplan-Meier method is used to estimate survival and hazard function for survival times of newborns that have not completed their first month. Of 700 neonates in the study area, 25% of them died during 2018-2020. Variables of interest that had a significant effect on neonatal death by Cox Proportional Hazard Model analysis were neonate weight, resident type, and gestational age. In Cox Proportional Hazard Model analysis all the variables of interest had an effect on neonatal death, but the variables with a significant effect included, weight of neonate, resident type and gestational age.
文摘Breast cancer is one of the leading diseases that affect women’s lives. It affects their lives in so many ways by denying them the required standard of health needed to carry out all of their daily activities for some days, weeks, months or years before eventually causing death. This research estimates the survival rate of breast cancer patients and investigates the effects of stage of tumor, gender, age, ethnic group, occupation, marital status and type of cancer upon the survival of patients. Data used for the study were extracted from the case file of patients in the Radiation Oncology Department, University College Hospital, Ibadan using a well-structured pro forma in which 74 observations were censored and 30 events occurred. The Kaplan-Meier estimator was used to estimate the overall survival probability of breast cancer patients following their recruitment into the study and determine the mean and median survival times of breast cancer patients following their time of recruitment into the study. Since there are different groups with respect to the stages of tumor at the time of diagnosis, the log-rank test was used to compare the survival curve of the stages of tumor with considering p-values below 0.05 as statistically significant. Multivariate Cox regression was used to investigate the effects of some variables on the survival of patients. The overall cumulative survival probability obtained is 0.175 (17.5%). The overall estimated mean time until death is 28.751 weeks while the median time between admission and death is 23 weeks. As the p-value (0.000032) of the log-rank test for comparing stages of tumor is less than 0.05, it is concluded that there is significant evidence of a difference in survival times for the stages of tumor. The survival function plot for the stages of tumor shows that patients with stage III tumor are less likely to survive. From the estimated mean time until death for the stages of tumor, it was deduced that stage I tumor patients have an increased chance of survival. Types of cancer, gender, marital status, ethnic group, occupation and patient’s age at entry into the study are not important predictors of chances of survival.
基金supported by the Russian Science Foundation,project number 22-24-00610,https://rscf.ru/project/22-24-00610/.
文摘Juvenile survival is a key life-history influence on population dynamics and adaptive evolution.We analyzed the effects of individual chara-cteristics,early environment,and maternal investment on juvenile survival in a large solitary hibernating rodent-yellow ground squirrel Spermophilus fulvus using Cox mixed-effects models.Only 48%of weaned pups survived to dispersal and 17%survived to hibernation.Early life expectancy was primarily determined by individual characteristics and,to a lesser extent,by the early environment.The strongest and pos-itive predictor of juvenile survival was body mass which crucially affected mortality immediately after weaning.Males suffered higher mortality than females after the onset of dispersal;however,the overall difference between sexes was partly masked by high rates of mortality in the first days after emergence in both sexes.Later emerged juveniles had lower life expectancy than the earliest pups.The overall effect of local juvenile density was positive.Prolonged lactation did not enhance juvenile survival:Pups nursed longer survived shorter than the young nursed for a shorter period.Our findings support the hypothesis that females of S.fulvus cannot effectively regulate maternal expenditures to mitigate the effects of unfavorable conditions on their offspring.The strategy to deal with seasonal time constraints on life history in female S.fulvus suggests an early termination of maternal care at the cost of juvenile quality and survival.This female reproductive strategy corresponds to a"fast-solitary"life of folivorous desert-dwelling S.fulvus and other solitary ground squirrels with prolonged hibernation.
文摘On the basis of experimental observations on animals, applications to clinical data on patients and theoretical statistical reasoning, the author developed a com-puter-assisted general mathematical model of the ‘probacent’-probability equation, Equation (1) and death rate (mortality probability) equation, Equation (2) derivable from Equation (1) that may be applica-ble as a general approximation method to make use-ful predictions of probable outcomes in a variety of biomedical phenomena [1-4]. Equations (1) and (2) contain a constant, γ and c, respectively. In the pre-vious studies, the author used the least maximum- difference principle to determine these constants that were expected to best fit reported data, minimizing the deviation. In this study, the author uses the method of computer-assisted least sum of squares to determine the constants, γ and c in constructing the ‘probacent’-related formulas best fitting the NCHS- reported data on survival probabilities and death rates in the US total adult population for 2001. The results of this study reveal that the method of com-puter-assisted mathematical analysis with the least sum of squares seems to be simple, more accurate, convenient and preferable than the previously used least maximum-difference principle, and better fit-ting the NCHS-reported data on survival probabili-ties and death rates in the US total adult population. The computer program of curved regression for the ‘probacent’-probability and death rate equations may be helpful in research in biomedicine.