This paper develops a trigonometric-basis-fimction based Karhunen-Loeve (KL) expansion for simulating random earthquake excitations with known covariance functions. The methods for determining the number of the KL t...This paper develops a trigonometric-basis-fimction based Karhunen-Loeve (KL) expansion for simulating random earthquake excitations with known covariance functions. The methods for determining the number of the KL terms and defining the involved random variables are described in detail. The simplified form of the KL expansion is given, whereby the relationship between the KL expansion and the spectral representation method is investigated and revealed. The KL expansion is of high efficiency for simulating long-term earthquake excitations in the sense that it needs a minimum number of random variables, as compared with the spectral representation method. Numerical examples demonstrate the convergence and accuracy of the KL expansion for simulating two commonly-used random earthquake excitation models and estimating linear and nonlinear random responses to the random excitations.展开更多
在运输过程中,包装件经常受到非高斯随机振动的作用,在进行包装系统优化时,经常需要重复确定包装件加速度响应的统计特征和振动可靠性,该研究提出一种高效准确确定非高斯随机振动条件下非线性包装件加速度响应统计特征的分析方法。采用...在运输过程中,包装件经常受到非高斯随机振动的作用,在进行包装系统优化时,经常需要重复确定包装件加速度响应的统计特征和振动可靠性,该研究提出一种高效准确确定非高斯随机振动条件下非线性包装件加速度响应统计特征的分析方法。采用非高斯Karhunen-Loeve展开将非高斯随机振动表示为非高斯随机变量的线性组合,用一阶泰勒展开估计包装件加速度响应,确定加速度响应的统计矩参数,根据包装件加速度响应的前四阶矩参数,应用鞍点估计法确定包装件加速度响应的概率密度函数(probability density function, PDF)和累积分布函数(cumulative distribution function, CDF)。由于采用随机变量的线性组合模拟非高斯随机振动激励,避免了随机变量非线性变换,采用一阶泰勒展开估计包装件加速度响应具有良好的准确性,鞍点估计法分析包装件加速度响应的PDF和CDF,避免了大量蒙特卡洛或拟蒙特卡洛分析,提高了分析效率。展开更多
文摘This paper develops a trigonometric-basis-fimction based Karhunen-Loeve (KL) expansion for simulating random earthquake excitations with known covariance functions. The methods for determining the number of the KL terms and defining the involved random variables are described in detail. The simplified form of the KL expansion is given, whereby the relationship between the KL expansion and the spectral representation method is investigated and revealed. The KL expansion is of high efficiency for simulating long-term earthquake excitations in the sense that it needs a minimum number of random variables, as compared with the spectral representation method. Numerical examples demonstrate the convergence and accuracy of the KL expansion for simulating two commonly-used random earthquake excitation models and estimating linear and nonlinear random responses to the random excitations.
文摘在运输过程中,包装件经常受到非高斯随机振动的作用,在进行包装系统优化时,经常需要重复确定包装件加速度响应的统计特征和振动可靠性,该研究提出一种高效准确确定非高斯随机振动条件下非线性包装件加速度响应统计特征的分析方法。采用非高斯Karhunen-Loeve展开将非高斯随机振动表示为非高斯随机变量的线性组合,用一阶泰勒展开估计包装件加速度响应,确定加速度响应的统计矩参数,根据包装件加速度响应的前四阶矩参数,应用鞍点估计法确定包装件加速度响应的概率密度函数(probability density function, PDF)和累积分布函数(cumulative distribution function, CDF)。由于采用随机变量的线性组合模拟非高斯随机振动激励,避免了随机变量非线性变换,采用一阶泰勒展开估计包装件加速度响应具有良好的准确性,鞍点估计法分析包装件加速度响应的PDF和CDF,避免了大量蒙特卡洛或拟蒙特卡洛分析,提高了分析效率。