Numerical simulation of two-phase flow in fractured karst reservoirs is still a challenging issue.The triple-porosity model is the major approach up to now.However,the triple-continuum assumption in this model is unac...Numerical simulation of two-phase flow in fractured karst reservoirs is still a challenging issue.The triple-porosity model is the major approach up to now.However,the triple-continuum assumption in this model is unacceptable for many cases.In the present work,an efficient numerical model has been developed for immiscible two-phase flowin fractured karst reservoirs based on the idea of equivalent continuum representation.First,based on the discrete fracture-vug model and homogenization theory,the effective absolute permeability tensors for each grid blocks are calculated.And then an analytical procedure to obtain a pseudo relative permeability curves for a grid block containing fractures and cavities has been successfully implemented.Next,a full-tensor simulator has been designed based on a hybrid numerical method(combining mixed finite element method and finite volume method).A simple fracture system has been used to demonstrate the validity of our method.At last,we have used the fracture and cavity statistics data fromTAHE outcrops in west China,effective permeability values and other parameters from our code,and an equivalent continuum simulator to calculate the water flooding profiles for more realistic systems.展开更多
基金supported by the National Basic Research Program of China(“973”Program)(Grant No.2011CB201004)the ImportantNational Science and Technology Project of China(Grant No.2011ZX05014-005-003HZ)+2 种基金the National Natural Science Foundation of China(Grant No.11102237)the Introducing Talents of Discipline to Universities of China(Grant No.B08028)the Fundamental Research Funds for the Central Universities(Grant No.27R1102065A).
文摘Numerical simulation of two-phase flow in fractured karst reservoirs is still a challenging issue.The triple-porosity model is the major approach up to now.However,the triple-continuum assumption in this model is unacceptable for many cases.In the present work,an efficient numerical model has been developed for immiscible two-phase flowin fractured karst reservoirs based on the idea of equivalent continuum representation.First,based on the discrete fracture-vug model and homogenization theory,the effective absolute permeability tensors for each grid blocks are calculated.And then an analytical procedure to obtain a pseudo relative permeability curves for a grid block containing fractures and cavities has been successfully implemented.Next,a full-tensor simulator has been designed based on a hybrid numerical method(combining mixed finite element method and finite volume method).A simple fracture system has been used to demonstrate the validity of our method.At last,we have used the fracture and cavity statistics data fromTAHE outcrops in west China,effective permeability values and other parameters from our code,and an equivalent continuum simulator to calculate the water flooding profiles for more realistic systems.