In this paper, a multi-item inventory model with storage space, number of orders and production cost as constraints are developed in both crisp and fuzzy environment. In most of the real world situations the cost para...In this paper, a multi-item inventory model with storage space, number of orders and production cost as constraints are developed in both crisp and fuzzy environment. In most of the real world situations the cost parameters, the objective functions and constraints of the decision makers are imprecise in nature. This model is solved with shortages and the unit cost dependent demand is assumed. Hence the cost parameters are imposed here in fuzzy environment. This model has been solved by Kuhn-Tucker conditions method. The results for the model without shortages are obtained as a particular case. The model is illustrated with numerical example.展开更多
随着分布式能源的发展,传统用户具备发电能力而成为产消者(production and consumption users,PCU)的趋势愈演愈烈,该文主要研究了同一微能网下大量产消者的协同运行问题。电价不确定性和产消者响应给微能网协同不同利益主体的PCU之间...随着分布式能源的发展,传统用户具备发电能力而成为产消者(production and consumption users,PCU)的趋势愈演愈烈,该文主要研究了同一微能网下大量产消者的协同运行问题。电价不确定性和产消者响应给微能网协同不同利益主体的PCU之间的调度带来困难。在此背景下提出考虑产消者响应与电价不确定性的微能网与产消者混合博弈优化策略。首先,构建产消者响应模型和电价不确定性模型,引入效用函数来描述PCU的满意程度,采用鲁棒优化和机会约束方法描述电价的不确定性与新能源出力的不确定性。其次,构建混合博弈模型,即上层微能网运营商(integrated energy operator,IEO)与下层PCU之间的主从博弈模型和下层PCU联盟之间的合作博弈模型。上层IEO作为主从博弈的领导者以运行成本最小化为目标,通过为产消者制定电价、热价引导产消者的用能需求;下层产消者作为跟随者,以效益最大为目标通过合作方式对IEO的决策进行产消者响应。PCU之间的合作博弈以纳什议价的方式进行,将PCU模型等效为联盟收益最大化和合作分配两个子问题。基于KKT条件利用Big-M法和Mc Cormick包络法将双层问题转换为单层混合整数线性规划问题求解主从博弈,结合交替方向乘子法(alternating direction multiplier method,ADMM)求解下层合作博弈。结果表明,该文所提策略有效协调了微能网与PCU的调度并保证了PCU合作联盟的公平性。展开更多
文摘In this paper, a multi-item inventory model with storage space, number of orders and production cost as constraints are developed in both crisp and fuzzy environment. In most of the real world situations the cost parameters, the objective functions and constraints of the decision makers are imprecise in nature. This model is solved with shortages and the unit cost dependent demand is assumed. Hence the cost parameters are imposed here in fuzzy environment. This model has been solved by Kuhn-Tucker conditions method. The results for the model without shortages are obtained as a particular case. The model is illustrated with numerical example.
文摘随着分布式能源的发展,传统用户具备发电能力而成为产消者(production and consumption users,PCU)的趋势愈演愈烈,该文主要研究了同一微能网下大量产消者的协同运行问题。电价不确定性和产消者响应给微能网协同不同利益主体的PCU之间的调度带来困难。在此背景下提出考虑产消者响应与电价不确定性的微能网与产消者混合博弈优化策略。首先,构建产消者响应模型和电价不确定性模型,引入效用函数来描述PCU的满意程度,采用鲁棒优化和机会约束方法描述电价的不确定性与新能源出力的不确定性。其次,构建混合博弈模型,即上层微能网运营商(integrated energy operator,IEO)与下层PCU之间的主从博弈模型和下层PCU联盟之间的合作博弈模型。上层IEO作为主从博弈的领导者以运行成本最小化为目标,通过为产消者制定电价、热价引导产消者的用能需求;下层产消者作为跟随者,以效益最大为目标通过合作方式对IEO的决策进行产消者响应。PCU之间的合作博弈以纳什议价的方式进行,将PCU模型等效为联盟收益最大化和合作分配两个子问题。基于KKT条件利用Big-M法和Mc Cormick包络法将双层问题转换为单层混合整数线性规划问题求解主从博弈,结合交替方向乘子法(alternating direction multiplier method,ADMM)求解下层合作博弈。结果表明,该文所提策略有效协调了微能网与PCU的调度并保证了PCU合作联盟的公平性。