期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Model Predictive Control of Resonant Systems Using Kautz Model
1
作者 Shamik Misra Rajasekhara Reddy Prabirkumar Saha 《International Journal of Automation and computing》 EI CSCD 2016年第5期501-515,共15页
The scope of this paper broadly spans in two areas: system identification of resonant system and design of an efficient control scheme suitable for resonant systems. Use of filters based on orthogonal basis functions... The scope of this paper broadly spans in two areas: system identification of resonant system and design of an efficient control scheme suitable for resonant systems. Use of filters based on orthogonal basis functions (OBF) have been advocated for modelling of resonant process. Kautz filter has been identified as best suited OBF for this purpose. A state space based system identification technique using Kautz filters, viz. Kautz model, has been demonstrated. Model based controllers are believed to be more efficient than classical controllers because explicit use of process model is essential with these modelling techniques. Extensive literature search concludes that very few reports are available which explore use of the model based control studies on resonant system. Two such model based controllers are considered in this work, viz. model predictive controller and internal model controller. A model predictive control algorithm has been developed using the Kautz model. The efficacy of the model and the controller has been verified by two case studies, viz. linear second order underdamped process and a mildly nonlinear magnetic ball suspension system. Comparative assessment of performances of these controllers in those case studies have been carried out. 展开更多
关键词 model predictive control resonant systems kautz model orthonormal basis function internal model control
原文传递
基于KAUTZ模型的预测控制仿真研究 被引量:3
2
作者 许鸣珠 刘贺平 +1 位作者 李晓理 王允建 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第15期3481-3484,共4页
采用Kautz函数逼近来得到未知系统模型,利用带遗忘因子的最小二乘法在线辨识系统模型变化。基于Kautz模型设计了一种自适应预测控制器,并且针对系统投运初期的辨识误差提出了一种衰减因子补偿方法,提高了控制品质。该算法自适应能力强,... 采用Kautz函数逼近来得到未知系统模型,利用带遗忘因子的最小二乘法在线辨识系统模型变化。基于Kautz模型设计了一种自适应预测控制器,并且针对系统投运初期的辨识误差提出了一种衰减因子补偿方法,提高了控制品质。该算法自适应能力强,控制精度高。仿真试验证明了该算法的有效性。 展开更多
关键词 kautz模型 预测控制 最小二乘辨识 衰减因子
下载PDF
基于KAUTZ模型的预测函数控制及其稳定条件 被引量:1
3
作者 许鸣珠 刘贺平 +1 位作者 李晓理 王允建 《北京科技大学学报》 EI CAS CSCD 北大核心 2007年第11期1171-1176,共6页
对模型未知的系统采用Kautz函数逼近得到系统的近似模型.基于所得到的Kautz模型设计了一种预测函数控制器.对该算法进行了稳定性分析,依据Lyapunov稳定性定理得到了保证闭环控制系统稳定的充分条件.仿真实验证明,该算法能够准确逼近真... 对模型未知的系统采用Kautz函数逼近得到系统的近似模型.基于所得到的Kautz模型设计了一种预测函数控制器.对该算法进行了稳定性分析,依据Lyapunov稳定性定理得到了保证闭环控制系统稳定的充分条件.仿真实验证明,该算法能够准确逼近真实系统模型,实现自适应控制,得到满意的控制效果. 展开更多
关键词 预测函数控制 kautz模型 最小二乘辨识 LYAPUNOV稳定性
下载PDF
基于Kautz模型的永磁同步电动机调速系统电流预测控制 被引量:2
4
作者 高旭东 许鸣珠 栾东雪 《微特电机》 北大核心 2016年第9期78-82,共5页
提出了一种基于Kautz模型的自适应增量式模型预测控制算法,并将该算法应用到基于DSP TMS280F2812的永磁同步电动机数字控制平台上,实现了对永磁同步电动机电流的数字控制。根据数字控制平台的局限性,作者对该算法进行了优化。大量实验证... 提出了一种基于Kautz模型的自适应增量式模型预测控制算法,并将该算法应用到基于DSP TMS280F2812的永磁同步电动机数字控制平台上,实现了对永磁同步电动机电流的数字控制。根据数字控制平台的局限性,作者对该算法进行了优化。大量实验证明,提出的模型预测控制算法可以使永磁同步电动机电流控制系统具有较快的响应速度,较为平稳的运行状态,较强的鲁棒性,在电机控制领域具有较高的工程应用价值。 展开更多
关键词 kautz模型 模型预测控制 永磁同步电动机 电流控制 算法优化
下载PDF
Iterative Selection of GOB Poles in the Context of System Modeling
5
作者 Anis Khouaja Hassani Messaoud 《International Journal of Automation and computing》 EI CSCD 2019年第1期102-111,共10页
This paper is concerned with the problem of system identification using expansions on generalized orthonormal bases(GOB). Three algorithms are proposed to optimize the poles of such a basis. The first two algorithms d... This paper is concerned with the problem of system identification using expansions on generalized orthonormal bases(GOB). Three algorithms are proposed to optimize the poles of such a basis. The first two algorithms determine a GOB with optimal real poles while the third one determines a GOB with optimal real and complex poles. These algorithms are based on the estimation of the dominant mode associated with a residual signal obtained by iteratively filtering the output of the process to be modelled. These algorithms are iterative and based on the quadratic error between the linear process output and the GOB based model output. They present the advantage to be very simple to implement. No numerical optimization technique is needed, and in consequence there is no problem of local minima as is the case for other algorithms in the literature. The convergence of the proposed algorithms is proved by demonstrating that the modeling quadratic error between the process output and the GOB based model is decreasing at each iteration of the algorithm. The performance of the proposed pole selection algorithms are based on the quadratic error criteria and illustrated by means of simulation results. 展开更多
关键词 Generalized orthonormal bases(GOB) LAGUERRE FUNCTIONS kautz FUNCTIONS POLE estimation modelling identification
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部