In this paper, we consider the generalized Korteweg-de-Vries (KdV) equations which are remarkable models of the water waves mechanics, the shallow water waves, the quantum mechanics, the ion acoustic waves in plasma, ...In this paper, we consider the generalized Korteweg-de-Vries (KdV) equations which are remarkable models of the water waves mechanics, the shallow water waves, the quantum mechanics, the ion acoustic waves in plasma, the electro-hydro-dynamical model for local electric field, signal processing waves through optical fibers, etc. We determine the useful and further general exact traveling wave solutions of the above mentioned NLDEs by applying the exp(−τ(ξ))-expansion method by aid of traveling wave transformations. Furthermore, we explain the physical significance of the obtained solutions of its definite values of the involved parameters with graphic representations in order to know the physical phenomena. Finally, we show that the exp(−τ(ξ))-expansion method is convenient, powerful, straightforward and provide more general solutions and can be helping to examine vast amount of travelling wave solutions to the other different kinds of NLDEs.展开更多
The Time Fractional Burger equation was solved in this study using the Mabel software and the Variational Iteration approach. where a number of instances of the Time Fractional Burger Equation were handled using this ...The Time Fractional Burger equation was solved in this study using the Mabel software and the Variational Iteration approach. where a number of instances of the Time Fractional Burger Equation were handled using this technique. Tables and images were used to present the collected numerical results. The difference between the exact and numerical solutions demonstrates the effectiveness of the Mabel program’s solution, as well as the accuracy and closeness of the results this method produced. It also demonstrates the Mabel program’s ability to quickly and effectively produce the numerical solution.展开更多
In this paper, the Adomian decomposition method was used to solve the Time Fractional Burger equation using Mabel program. This method was applied to a number of examples of the Time Fractional Burger Equation. The ob...In this paper, the Adomian decomposition method was used to solve the Time Fractional Burger equation using Mabel program. This method was applied to a number of examples of the Time Fractional Burger Equation. The obtained numerical results were presented in the form of tables and graphics. The difference between the exact solutions and the numerical solutions shows us the effectiveness of the solution using the Mabel program and that this method gave accurate results and was close to the exact solution, in addition to its ability to obtain the numerical solution quickly and efficiently using the Mabel program.展开更多
In this paper, our objective is to explore novel solitary wave solutions of the Burgers-Fisher equation, which characterizes the interplay between diffusion and reaction phenomena. Understanding this equation is cruci...In this paper, our objective is to explore novel solitary wave solutions of the Burgers-Fisher equation, which characterizes the interplay between diffusion and reaction phenomena. Understanding this equation is crucial for addressing challenges in fluid, chemical kinetics and population dynamics. We tackle this task by employing the Riccati equation and employing various function transformations to solve the Burgers-Fisher equation. By adopting different coefficients in the Riccati equation, we obtain a wide range of exact solutions, many of which have not been previously documented. These abundant solitary wave solutions serve as valuable tools for comprehending the Burgers-Fisher equation and contribute to expanding our knowledge in this field.展开更多
In this paper, we discuss conditional stability of solitary-wave solutions in the sense of Liapunov for the generalized compound KdV equation and the generalized compound KdV-Burgers equations. Linear stability of the...In this paper, we discuss conditional stability of solitary-wave solutions in the sense of Liapunov for the generalized compound KdV equation and the generalized compound KdV-Burgers equations. Linear stability of the exact solitary-wave solutions is proved for the above two types of equations when the small disturbance of travelling wave form satisfies some special conditions.展开更多
This paper is concerned with the stability of the rarefaction wave for the generalized KdV-Burgers equation [GRAPHICS] Roughly speaking, under the assumption that u(-) < u(+), the solution u(x, t) to Cauchy problem...This paper is concerned with the stability of the rarefaction wave for the generalized KdV-Burgers equation [GRAPHICS] Roughly speaking, under the assumption that u(-) < u(+), the solution u(x, t) to Cauchy problem (1) satisfying (sup)(x&ISIN;R)\u(x, t) - u(R)(x/t)\ --> 0 as t --> infinity, where u(R)(x/t) is the rarefaction wave of the non-viscous Burgers equation u(t) + f(u)(x) = 0 with Riemann initial data [GRAPHICS]展开更多
The KdV-Burgers equation for dust acoustic waves in unmagnetized plasma having electrons, singly charged non- thermal ions, and hot and cold dust species is derived using the reductive perturbation method. The Boltzma...The KdV-Burgers equation for dust acoustic waves in unmagnetized plasma having electrons, singly charged non- thermal ions, and hot and cold dust species is derived using the reductive perturbation method. The Boltzmann distribution is used for electrons in the presence of the cold (hot) dust viscosity coefficients. The semi-inverse method and Agrawal variational technique are applied to formulate the space-time fractional KdV-Burgers equation which is solved using the fractional sub-equation method. The effect of the fractional parameter on the behavior of the dust acoustic shock waves in the dusty plasma is investigated.展开更多
This paper is concerned with the nonlinear stability of planar shock profiles to the Cauchy problem of the generalized KdV-Burgers equation in two dimensions. Our analysis is based on the energy method developed by Go...This paper is concerned with the nonlinear stability of planar shock profiles to the Cauchy problem of the generalized KdV-Burgers equation in two dimensions. Our analysis is based on the energy method developed by Goodman [5] for the nonlinear stability of scalar viscous shock profiles to scalar viscous conservation laws and some new decay estimates on the planar shock profiles of the generalized KdV-Burgers equation.展开更多
From the point of view of approximate symmetry, the modified Korteweg-de Vries-Burgers (mKdV-Burgers) equation with weak dissipation is investigated. The symmetry of a system of the corresponding partial differentia...From the point of view of approximate symmetry, the modified Korteweg-de Vries-Burgers (mKdV-Burgers) equation with weak dissipation is investigated. The symmetry of a system of the corresponding partial differential equations which approximate the perturbed mKdV-Burgers equation is constructed and the corresponding general approximate symmetry reduction is derived; thereby infinite series solutions and general formulae can be obtained. The obtained result shows that the zero-order similarity solution to the mKdV-Burgers equation satisfies the Painleve II equation. Also, at the level of travelling wave reduction, the general solution formulae are given for any travelling wave solution of an unperturbed mKdV equation. As an illustrative example, when the zero-order tanh profile solution is chosen as an initial approximate solution, physically approximate similarity solutions are obtained recursively under the appropriate choice of parameters occurring during computation.展开更多
In this paper, a new special ansatz solution, where elliptic equation satisfied by elliptic functions is fallen as an intermediate transformation, is applied to solve the KdV-Burgers-Kuramoto equation, and many morene...In this paper, a new special ansatz solution, where elliptic equation satisfied by elliptic functions is fallen as an intermediate transformation, is applied to solve the KdV-Burgers-Kuramoto equation, and many morenew periodic solutions are obtadned, including solutions expressed in terms of Jacobi elliptic functions, solution expressed in terms of Weierstrass elliptic function.展开更多
The anti-periodic traveling wave solutions to a forced two-dimensional generalized KdV-Burgers equation are studied. Some theorems concerning the boundness, existence and uniqueness of the solution to this equation ar...The anti-periodic traveling wave solutions to a forced two-dimensional generalized KdV-Burgers equation are studied. Some theorems concerning the boundness, existence and uniqueness of the solution to this equation are proved.展开更多
The compound KdV-Burgers equation and combined KdV-mKdV equation are real physical models concerning many branches in physics.In this paper,applying the improved trigonometric function method to these equations,rich e...The compound KdV-Burgers equation and combined KdV-mKdV equation are real physical models concerning many branches in physics.In this paper,applying the improved trigonometric function method to these equations,rich explicit and exact travelling wave solutions,which contain solitary-wave solutions,periodic solutions,and combined formal solitary-wave solutions,are obtained.展开更多
The element-free Galerkin (EFG) method for numerically solving the compound Korteweg-de Vries-Burgers (KdVB) equation is discussed in this paper. The Galerkin weak form is used to obtain the discrete equation and ...The element-free Galerkin (EFG) method for numerically solving the compound Korteweg-de Vries-Burgers (KdVB) equation is discussed in this paper. The Galerkin weak form is used to obtain the discrete equation and the essential boundary conditions are enforced by the penalty method. The effectiveness of the EFG method of solving the compound Korteweg-de Vries-Burgers (KdVB) equation is illustrated by three numerical examples.展开更多
We present two methods to reduce the discrete compound KdV-Burgers equation, which are reductions of the independent and dependent variables: the translational invariant method has been applied in order to reduce the...We present two methods to reduce the discrete compound KdV-Burgers equation, which are reductions of the independent and dependent variables: the translational invariant method has been applied in order to reduce the independent variables; and a discrete spectral matrix has been introduced to reduce the number of dependent variables. Based on the invariance of a discrete compound KdV-Burgers equation under infinitesimal transformation with respect to its dependent and independent variables, we present the determining equations of transformation Lie groups for the KdV-Burgers equation and use the characteristic equations to obtain new forms of invariants.展开更多
By using the modified Clarkson–Kruskal(CK)direct method,we obtain the non-Lie symmetry group of the two-dimensional KdV-Burgers equation.Under some constraint conditions,Lie point symmetry is also obtained.Through th...By using the modified Clarkson–Kruskal(CK)direct method,we obtain the non-Lie symmetry group of the two-dimensional KdV-Burgers equation.Under some constraint conditions,Lie point symmetry is also obtained.Through the symmetry group,some new exact solutions of the two-dimensional KdV-Burgers equation are found.展开更多
Two types of exact traveling wave solutions to Burgers-KdV equation by basis on work of XIONG Shu-lin are presented. Furthermore, same new results are replenished in work of FAN En-gui et al.
Based on the full velocity difference model, Jiang et al. put forward the speed gradient model through the micromacro linkage (Jiang R, Wu Q S and Zhu Z J 2001 Chin. Sci. Bull 46 345 and Jiang R, Wu Q S and Zhu Z J 2...Based on the full velocity difference model, Jiang et al. put forward the speed gradient model through the micromacro linkage (Jiang R, Wu Q S and Zhu Z J 2001 Chin. Sci. Bull 46 345 and Jiang R, Wu Q S and Zhu Z J 2002 Trans. Res. B 36 405). In this paper, the Taylor expansion is adopted to modify the model. The backward travel problem is overcome by our model, which exists in many higher-order continuum models. The neutral stability condition of the model is obtained through the linear stability analysis. Nonlinear analysis shows clearly that the density fluctuation in traffic flow leads to a variety of density waves. Moreover, the Korteweg-de Vries-Burgers (KdV-Burgers) equation is derived to describe the traffic flow near the neutral stability line and the corresponding solution for traffic density wave is derived. The numerical simulation is carried out to investigate the local cluster effects. The results are consistent with the realistic traffic flow and also further verify the results of nonlinear analysis.展开更多
This paper focuses on the application of Exp-function method to obtain generalized solutions of the KdV-Burgers-Kuramoto equation and the Kuramoto-Sivashinsky equation.It is demonstrated that the Exp-function method p...This paper focuses on the application of Exp-function method to obtain generalized solutions of the KdV-Burgers-Kuramoto equation and the Kuramoto-Sivashinsky equation.It is demonstrated that the Exp-function method provides a mathematical tool for solving the nonlinear evolution equation in mathematical physics.展开更多
The boundary control of MKdV-Burgers equation was considered by feedback control on the domain [0,1]. The existence of the solution of MKdV-Burgers equation with the feedback control law was proved. On the base, prior...The boundary control of MKdV-Burgers equation was considered by feedback control on the domain [0,1]. The existence of the solution of MKdV-Burgers equation with the feedback control law was proved. On the base, priori estimates for the solution was given. At last, the existence of the weak solution of MKdV-Burgers equation was proved and the global-exponential and asymptotic stability of the solution of MKdV-Burgers equation was given.展开更多
文摘In this paper, we consider the generalized Korteweg-de-Vries (KdV) equations which are remarkable models of the water waves mechanics, the shallow water waves, the quantum mechanics, the ion acoustic waves in plasma, the electro-hydro-dynamical model for local electric field, signal processing waves through optical fibers, etc. We determine the useful and further general exact traveling wave solutions of the above mentioned NLDEs by applying the exp(−τ(ξ))-expansion method by aid of traveling wave transformations. Furthermore, we explain the physical significance of the obtained solutions of its definite values of the involved parameters with graphic representations in order to know the physical phenomena. Finally, we show that the exp(−τ(ξ))-expansion method is convenient, powerful, straightforward and provide more general solutions and can be helping to examine vast amount of travelling wave solutions to the other different kinds of NLDEs.
文摘The Time Fractional Burger equation was solved in this study using the Mabel software and the Variational Iteration approach. where a number of instances of the Time Fractional Burger Equation were handled using this technique. Tables and images were used to present the collected numerical results. The difference between the exact and numerical solutions demonstrates the effectiveness of the Mabel program’s solution, as well as the accuracy and closeness of the results this method produced. It also demonstrates the Mabel program’s ability to quickly and effectively produce the numerical solution.
文摘In this paper, the Adomian decomposition method was used to solve the Time Fractional Burger equation using Mabel program. This method was applied to a number of examples of the Time Fractional Burger Equation. The obtained numerical results were presented in the form of tables and graphics. The difference between the exact solutions and the numerical solutions shows us the effectiveness of the solution using the Mabel program and that this method gave accurate results and was close to the exact solution, in addition to its ability to obtain the numerical solution quickly and efficiently using the Mabel program.
文摘In this paper, our objective is to explore novel solitary wave solutions of the Burgers-Fisher equation, which characterizes the interplay between diffusion and reaction phenomena. Understanding this equation is crucial for addressing challenges in fluid, chemical kinetics and population dynamics. We tackle this task by employing the Riccati equation and employing various function transformations to solve the Burgers-Fisher equation. By adopting different coefficients in the Riccati equation, we obtain a wide range of exact solutions, many of which have not been previously documented. These abundant solitary wave solutions serve as valuable tools for comprehending the Burgers-Fisher equation and contribute to expanding our knowledge in this field.
基金The project supported by National Natural Science Foundation of China under Grant No. 10371023 and Shanghai Leading Academic Discipline Project under Grant No. T0502)
文摘In this paper, we discuss conditional stability of solitary-wave solutions in the sense of Liapunov for the generalized compound KdV equation and the generalized compound KdV-Burgers equations. Linear stability of the exact solitary-wave solutions is proved for the above two types of equations when the small disturbance of travelling wave form satisfies some special conditions.
文摘This paper is concerned with the stability of the rarefaction wave for the generalized KdV-Burgers equation [GRAPHICS] Roughly speaking, under the assumption that u(-) < u(+), the solution u(x, t) to Cauchy problem (1) satisfying (sup)(x&ISIN;R)\u(x, t) - u(R)(x/t)\ --> 0 as t --> infinity, where u(R)(x/t) is the rarefaction wave of the non-viscous Burgers equation u(t) + f(u)(x) = 0 with Riemann initial data [GRAPHICS]
文摘The KdV-Burgers equation for dust acoustic waves in unmagnetized plasma having electrons, singly charged non- thermal ions, and hot and cold dust species is derived using the reductive perturbation method. The Boltzmann distribution is used for electrons in the presence of the cold (hot) dust viscosity coefficients. The semi-inverse method and Agrawal variational technique are applied to formulate the space-time fractional KdV-Burgers equation which is solved using the fractional sub-equation method. The effect of the fractional parameter on the behavior of the dust acoustic shock waves in the dusty plasma is investigated.
文摘This paper is concerned with the nonlinear stability of planar shock profiles to the Cauchy problem of the generalized KdV-Burgers equation in two dimensions. Our analysis is based on the energy method developed by Goodman [5] for the nonlinear stability of scalar viscous shock profiles to scalar viscous conservation laws and some new decay estimates on the planar shock profiles of the generalized KdV-Burgers equation.
基金supported by the National Natural Science Foundations of China(Grant Nos 10735030,10475055,and 90503006)the National Basic Research Program of China(Grant No 2007CB814800)+1 种基金the Science Foundation for Post Doctorate Research from the Ministry of Science and Technology of China(Grant No 20070410727)the Natural Science Basic Research Plan in Shaanxi Province,China(Grant No SJ08A09)
文摘From the point of view of approximate symmetry, the modified Korteweg-de Vries-Burgers (mKdV-Burgers) equation with weak dissipation is investigated. The symmetry of a system of the corresponding partial differential equations which approximate the perturbed mKdV-Burgers equation is constructed and the corresponding general approximate symmetry reduction is derived; thereby infinite series solutions and general formulae can be obtained. The obtained result shows that the zero-order similarity solution to the mKdV-Burgers equation satisfies the Painleve II equation. Also, at the level of travelling wave reduction, the general solution formulae are given for any travelling wave solution of an unperturbed mKdV equation. As an illustrative example, when the zero-order tanh profile solution is chosen as an initial approximate solution, physically approximate similarity solutions are obtained recursively under the appropriate choice of parameters occurring during computation.
基金The project supported by National Natural Science Foundation of China under Grant No. 40305006
文摘In this paper, a new special ansatz solution, where elliptic equation satisfied by elliptic functions is fallen as an intermediate transformation, is applied to solve the KdV-Burgers-Kuramoto equation, and many morenew periodic solutions are obtadned, including solutions expressed in terms of Jacobi elliptic functions, solution expressed in terms of Weierstrass elliptic function.
文摘The anti-periodic traveling wave solutions to a forced two-dimensional generalized KdV-Burgers equation are studied. Some theorems concerning the boundness, existence and uniqueness of the solution to this equation are proved.
文摘The compound KdV-Burgers equation and combined KdV-mKdV equation are real physical models concerning many branches in physics.In this paper,applying the improved trigonometric function method to these equations,rich explicit and exact travelling wave solutions,which contain solitary-wave solutions,periodic solutions,and combined formal solitary-wave solutions,are obtained.
基金Project supported by the National Natural Science Foundation of China (Grant No.10871124)the Natural Science Foundation of Zhejiang Province of China (Grant No.Y6110007)
文摘The element-free Galerkin (EFG) method for numerically solving the compound Korteweg-de Vries-Burgers (KdVB) equation is discussed in this paper. The Galerkin weak form is used to obtain the discrete equation and the essential boundary conditions are enforced by the penalty method. The effectiveness of the EFG method of solving the compound Korteweg-de Vries-Burgers (KdVB) equation is illustrated by three numerical examples.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11072218and10672143)
文摘We present two methods to reduce the discrete compound KdV-Burgers equation, which are reductions of the independent and dependent variables: the translational invariant method has been applied in order to reduce the independent variables; and a discrete spectral matrix has been introduced to reduce the number of dependent variables. Based on the invariance of a discrete compound KdV-Burgers equation under infinitesimal transformation with respect to its dependent and independent variables, we present the determining equations of transformation Lie groups for the KdV-Burgers equation and use the characteristic equations to obtain new forms of invariants.
文摘By using the modified Clarkson–Kruskal(CK)direct method,we obtain the non-Lie symmetry group of the two-dimensional KdV-Burgers equation.Under some constraint conditions,Lie point symmetry is also obtained.Through the symmetry group,some new exact solutions of the two-dimensional KdV-Burgers equation are found.
文摘Two types of exact traveling wave solutions to Burgers-KdV equation by basis on work of XIONG Shu-lin are presented. Furthermore, same new results are replenished in work of FAN En-gui et al.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11072117 and 61074142)the Scientific Research Fund of Zhejiang Provincial Education Department,China (Grant No. Z201119278)+1 种基金the Natural Science Foundation of Ningbo City,China (Grant Nos. 2012A610152 and 2012A610038)the K. C. Wong Magna Fund in Ningbo University,China
文摘Based on the full velocity difference model, Jiang et al. put forward the speed gradient model through the micromacro linkage (Jiang R, Wu Q S and Zhu Z J 2001 Chin. Sci. Bull 46 345 and Jiang R, Wu Q S and Zhu Z J 2002 Trans. Res. B 36 405). In this paper, the Taylor expansion is adopted to modify the model. The backward travel problem is overcome by our model, which exists in many higher-order continuum models. The neutral stability condition of the model is obtained through the linear stability analysis. Nonlinear analysis shows clearly that the density fluctuation in traffic flow leads to a variety of density waves. Moreover, the Korteweg-de Vries-Burgers (KdV-Burgers) equation is derived to describe the traffic flow near the neutral stability line and the corresponding solution for traffic density wave is derived. The numerical simulation is carried out to investigate the local cluster effects. The results are consistent with the realistic traffic flow and also further verify the results of nonlinear analysis.
基金Supported by the National Natural Science Foundation of China(91024026,10975126)Supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China(200934021100 32)
文摘This paper focuses on the application of Exp-function method to obtain generalized solutions of the KdV-Burgers-Kuramoto equation and the Kuramoto-Sivashinsky equation.It is demonstrated that the Exp-function method provides a mathematical tool for solving the nonlinear evolution equation in mathematical physics.
基金Project supported by the National Natural Science Foundation of China(No.10071033)the Natural Science Foundation of Jiangsu Province(No.BK2002003)
文摘The boundary control of MKdV-Burgers equation was considered by feedback control on the domain [0,1]. The existence of the solution of MKdV-Burgers equation with the feedback control law was proved. On the base, priori estimates for the solution was given. At last, the existence of the weak solution of MKdV-Burgers equation was proved and the global-exponential and asymptotic stability of the solution of MKdV-Burgers equation was given.