By using the methods of mathematics analysis, we investigate the travelling wave solution of the KdVB equation under the assumption We prove that the travelling wave solution is quantitatively similar to the correspon...By using the methods of mathematics analysis, we investigate the travelling wave solution of the KdVB equation under the assumption We prove that the travelling wave solution is quantitatively similar to the corresponding Burgers shock wave. Then we prove that the absolute error of the general asymptotic expansion is high order quantity of the small parameter展开更多
In this work, while applying a new and novel (G'/G)-expansion version technique, we identify four families of the traveling wave solutions to the (1 + 1)-dimensional compound KdVB equation. The exact solutions are...In this work, while applying a new and novel (G'/G)-expansion version technique, we identify four families of the traveling wave solutions to the (1 + 1)-dimensional compound KdVB equation. The exact solutions are derived, in terms of hyperbolic, trigonometric and rational functions, involving various parameters. When the parameters are tuned to special values, both solitary, and periodic wave models are distinguished. State of the art symbolic algebra graphical representations and dynamical interpretations of the obtained solutions physics are provided and discussed. This in turn ends up revealing salient solutions features and demonstrating the used method efficiency.展开更多
Aict f Finjte rmvedrig wave (M) so1uhons fOr the fOllowhg sechear syttem (I){u_t-u_(xx)+u^mv^p=0 u_t-v_(xx)+u^q=0 -∞<x<+∞,t>0,p,q>0,m≥0 are studied. SolutiOns to (I) of the fOrm u (x, t)=lt(ct--x), v(...Aict f Finjte rmvedrig wave (M) so1uhons fOr the fOllowhg sechear syttem (I){u_t-u_(xx)+u^mv^p=0 u_t-v_(xx)+u^q=0 -∞<x<+∞,t>0,p,q>0,m≥0 are studied. SolutiOns to (I) of the fOrm u (x, t)=lt(ct--x), v(x, t)=v (cl--X) are called W soIutiOns if there exjstS a fwite ', such that u({)=v(j)=0 for t<{,':=ct--x. It is proVed that if Pq+nl<l, fOr any ed c thele erktS an FTW that is inhque up to phase transIahons and Is unbOunded, whena no rm ekist if pq+m> l. The asmpptohc weve profileS near the front as well as far from it are also determined. If I)q^m = l. the exjstence of travebe wave soluhons to (I) is proved. The plnof in Esqniruis's paper(1990) for the one m=0 co be sdriplified by using the methOd develOped in thjs paper.展开更多
A class of disturbed evolution equation is considered using a simple and valid technique. We first introduce the periodic traveling-wave solution of a corresponding typical evolution equation. Then the approximate sol...A class of disturbed evolution equation is considered using a simple and valid technique. We first introduce the periodic traveling-wave solution of a corresponding typical evolution equation. Then the approximate solution for an original disturbed evolution equation is obtained using the asymptotic method. We point out that the series of approximate solution is convergent and the accuracy of the asymptotic solution is studied using the fixed point theorem for the functional analysis.展开更多
We deal with asymptotic speed of wave propagation for a discrete reactlon-diffusion equation. We find the minimal wave speed c★ from the characteristic equation and show that c★ is just the asymptotic speed of wave ...We deal with asymptotic speed of wave propagation for a discrete reactlon-diffusion equation. We find the minimal wave speed c★ from the characteristic equation and show that c★ is just the asymptotic speed of wave propagation. The isotropic property and the existence of solution of the initial value problem for the given equation are also discussed.展开更多
In this paper, based on the robust inverse scattering method, we construct two kinds of solutions to the focusing modified Korteweg–de Vries equation. One is the classical soliton solution under the zero background c...In this paper, based on the robust inverse scattering method, we construct two kinds of solutions to the focusing modified Korteweg–de Vries equation. One is the classical soliton solution under the zero background condition and the other one is given through the nonzero background.Especially, for the nonzero background case, we choose a special spectral parameter such that the nonzero background solution is changed into the rational travelling waves. Finally, we also give a simple analysis of the soliton as the time t is large, then we give the comparison between the exact solution and the asymptotic solution.展开更多
文摘By using the methods of mathematics analysis, we investigate the travelling wave solution of the KdVB equation under the assumption We prove that the travelling wave solution is quantitatively similar to the corresponding Burgers shock wave. Then we prove that the absolute error of the general asymptotic expansion is high order quantity of the small parameter
文摘In this work, while applying a new and novel (G'/G)-expansion version technique, we identify four families of the traveling wave solutions to the (1 + 1)-dimensional compound KdVB equation. The exact solutions are derived, in terms of hyperbolic, trigonometric and rational functions, involving various parameters. When the parameters are tuned to special values, both solitary, and periodic wave models are distinguished. State of the art symbolic algebra graphical representations and dynamical interpretations of the obtained solutions physics are provided and discussed. This in turn ends up revealing salient solutions features and demonstrating the used method efficiency.
文摘Aict f Finjte rmvedrig wave (M) so1uhons fOr the fOllowhg sechear syttem (I){u_t-u_(xx)+u^mv^p=0 u_t-v_(xx)+u^q=0 -∞<x<+∞,t>0,p,q>0,m≥0 are studied. SolutiOns to (I) of the fOrm u (x, t)=lt(ct--x), v(x, t)=v (cl--X) are called W soIutiOns if there exjstS a fwite ', such that u({)=v(j)=0 for t<{,':=ct--x. It is proVed that if Pq+nl<l, fOr any ed c thele erktS an FTW that is inhque up to phase transIahons and Is unbOunded, whena no rm ekist if pq+m> l. The asmpptohc weve profileS near the front as well as far from it are also determined. If I)q^m = l. the exjstence of travebe wave soluhons to (I) is proved. The plnof in Esqniruis's paper(1990) for the one m=0 co be sdriplified by using the methOd develOped in thjs paper.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41175058,11071205,1202106,and 11101349)the Carbon Budget and Relevant Issues of the Chinese Academy of Sciences(Grant Nos.XDA01020304,KJ2012A001,and KJ2012Z245)+1 种基金the Natural Science Foundation of the Education Department of Anhui Province,China(Grant No.KJ2011A135)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK2011042)
文摘A class of disturbed evolution equation is considered using a simple and valid technique. We first introduce the periodic traveling-wave solution of a corresponding typical evolution equation. Then the approximate solution for an original disturbed evolution equation is obtained using the asymptotic method. We point out that the series of approximate solution is convergent and the accuracy of the asymptotic solution is studied using the fixed point theorem for the functional analysis.
基金Supported by the National Natural Science Foundation of China (No.10571064), and Natural Science Foundation of Guangdong Province of China (No.04010364)
文摘We deal with asymptotic speed of wave propagation for a discrete reactlon-diffusion equation. We find the minimal wave speed c★ from the characteristic equation and show that c★ is just the asymptotic speed of wave propagation. The isotropic property and the existence of solution of the initial value problem for the given equation are also discussed.
基金supported by the Natural Science Foundation of Shandong Province(Grant No.ZR2019QD018)National Natural Science Foundation of China(Grant Nos.11975143,12105161,61602188)+1 种基金CAS Key Laboratory of Science and Technology on Operational Oceanography(Grant No.OOST2021-05)Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents(Grant Nos.2017RCJJ068,2017RCJJ069)。
文摘In this paper, based on the robust inverse scattering method, we construct two kinds of solutions to the focusing modified Korteweg–de Vries equation. One is the classical soliton solution under the zero background condition and the other one is given through the nonzero background.Especially, for the nonzero background case, we choose a special spectral parameter such that the nonzero background solution is changed into the rational travelling waves. Finally, we also give a simple analysis of the soliton as the time t is large, then we give the comparison between the exact solution and the asymptotic solution.