Valleytronics is an emergent discipline in condensed matter physics and offers a new way to encode and manipulate information based on the valley degree of freedom in materials. Among the various materials being studi...Valleytronics is an emergent discipline in condensed matter physics and offers a new way to encode and manipulate information based on the valley degree of freedom in materials. Among the various materials being studied, Kekulé distorted graphene has emerged as a promising material for valleytronics applications. Graphene can be artificially distorted to form the Kekulé structures rendering the valley-related interaction. In this work, we review the recent progress of research on Kekulé structures of graphene and focus on the modified electronic bands due to different Kekulé distortions as well as their effects on the transport properties of electrons. We systematically discuss how the valley-related interaction in the Kekulé structures was used to control and affect the valley transport including the valley generation, manipulation, and detection. This article summarizes the current challenges and prospects for further research on Kekulé distorted graphene and its potential applications in valleytronics.展开更多
The Kekulé-based valence bond (VB) method, in which the VB model is solved using covalent Kekulé structures as basis functions, is justified in the present work. This method is demonstrated to provide satisf...The Kekulé-based valence bond (VB) method, in which the VB model is solved using covalent Kekulé structures as basis functions, is justified in the present work. This method is demonstrated to provide satisfactory descriptions for resonance energies and bond lengths of benzenoid hydrocarbons, being in good agreement with SCF-MO and experimental results. In addition, an alternative way of discussing characters of localized substructures within a polycyclic benzenoid system is suggested based upon such simplified VB calculations. Finally, the symmetries of VB ground states for nonalternant conjugated systems are also illustrated to be obtainable through these calculations, presenting very useful information for understanding the chemical behaviors of some nonalternant conjugated molecules.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12174051 and 12304069)。
文摘Valleytronics is an emergent discipline in condensed matter physics and offers a new way to encode and manipulate information based on the valley degree of freedom in materials. Among the various materials being studied, Kekulé distorted graphene has emerged as a promising material for valleytronics applications. Graphene can be artificially distorted to form the Kekulé structures rendering the valley-related interaction. In this work, we review the recent progress of research on Kekulé structures of graphene and focus on the modified electronic bands due to different Kekulé distortions as well as their effects on the transport properties of electrons. We systematically discuss how the valley-related interaction in the Kekulé structures was used to control and affect the valley transport including the valley generation, manipulation, and detection. This article summarizes the current challenges and prospects for further research on Kekulé distorted graphene and its potential applications in valleytronics.
文摘The Kekulé-based valence bond (VB) method, in which the VB model is solved using covalent Kekulé structures as basis functions, is justified in the present work. This method is demonstrated to provide satisfactory descriptions for resonance energies and bond lengths of benzenoid hydrocarbons, being in good agreement with SCF-MO and experimental results. In addition, an alternative way of discussing characters of localized substructures within a polycyclic benzenoid system is suggested based upon such simplified VB calculations. Finally, the symmetries of VB ground states for nonalternant conjugated systems are also illustrated to be obtainable through these calculations, presenting very useful information for understanding the chemical behaviors of some nonalternant conjugated molecules.