Kellogg gave a version of the Peaceman-Radford method. In this paper, we introduce a SSOR iteration method which uses Kellogg’s method. The new algorithm has some advantages over the traditional SSOR algorithm. A Cyc...Kellogg gave a version of the Peaceman-Radford method. In this paper, we introduce a SSOR iteration method which uses Kellogg’s method. The new algorithm has some advantages over the traditional SSOR algorithm. A Cyclic Reduction algorithm is introduced via a decoupling in Kellogg’s method.展开更多
The solution of Nekrasov’s integral equation is described. By means of this solution the wave kinetic, potential, and full mechanical energies are defined as functions of fluid depth and wavelength. The wave obeys th...The solution of Nekrasov’s integral equation is described. By means of this solution the wave kinetic, potential, and full mechanical energies are defined as functions of fluid depth and wavelength. The wave obeys the laws of mass and energy conservation. It is found that for any constant depth of fluid the wavelength is bounded from above by a value denoted as maximal wavelength. At maximal wavelength 1) the maximum slope of the free surface of the wave exceeds 38o and the value 45o is supposed attainable,2) the wave kinetic energy vanishes. The stability of a steady wave considered as a compound pendulum is analyzed.展开更多
文摘Kellogg gave a version of the Peaceman-Radford method. In this paper, we introduce a SSOR iteration method which uses Kellogg’s method. The new algorithm has some advantages over the traditional SSOR algorithm. A Cyclic Reduction algorithm is introduced via a decoupling in Kellogg’s method.
文摘The solution of Nekrasov’s integral equation is described. By means of this solution the wave kinetic, potential, and full mechanical energies are defined as functions of fluid depth and wavelength. The wave obeys the laws of mass and energy conservation. It is found that for any constant depth of fluid the wavelength is bounded from above by a value denoted as maximal wavelength. At maximal wavelength 1) the maximum slope of the free surface of the wave exceeds 38o and the value 45o is supposed attainable,2) the wave kinetic energy vanishes. The stability of a steady wave considered as a compound pendulum is analyzed.