With the breakthrough of exploration in Well TP16-1, the lower Kepingtage Formation becomes a key target for petroleum exploration of deep clastic reservoir in Tahe area. In this paper we focused on the research of th...With the breakthrough of exploration in Well TP16-1, the lower Kepingtage Formation becomes a key target for petroleum exploration of deep clastic reservoir in Tahe area. In this paper we focused on the research of the reservoir characteristics and its controlling factors in two sub-member formations(S1k11 and S1k13). Based on X-ray diffraction, conventional physical properties data(porosity and permeability) and reservoir storage space data(casting thin section and scanning electron microscope), we determined that the S1k1 Formation belongs to extra-low porosity and permeability reservoir, although the upper S1k13 Formation shows relative better physical characteristic than the lower S1k11 Formation. The development of storage space in the study area is controlled by sedimentary microfacies, diagenesis process. Reservoirs in S1k1 Formation are mainly located in channel(S1k11 sandstones) and sand flat(S1k13 sandstones). The sand flat sediments with a more coarse grain size compared with the channel. In diagenesis, compaction is the major controlling factor for reducing the porosity, followed by cementation. Dissolution of diagenesis is the major controlling factor in enhancing the reservoir porosities. Compared with channel(S1k11) sandstones, sand flat sandstones(S1k13) have better reservoir quality for its weaker compaction, cementation and stronger dissolution. On the basis of sedimentary characteristics(grain size and subfacies), physical property(porosity and permeability) and reservoir storage space, we divide the S1k1 reservoir into three categories(I, II and III). Type I reservoir is high quality reservoir. It is mainly distributed in the south area of S1k11 and S1k13 reservoir. Type II is moderate reservoir. It is located in the middle of S1k11 reservoir and in the north of S1k13 reservoir. Type III is the poor reservoir. It is only located in the north of S1k11 reservoir.展开更多
The Silurian hydrocarbon exploration in the northwest Tarim Basin had long been fruitless, till Well XSD1 drilled in 2018 in the Shajingzi structural belt, northwest Tarim Basin tapped industrial gas flow from the Sil...The Silurian hydrocarbon exploration in the northwest Tarim Basin had long been fruitless, till Well XSD1 drilled in 2018 in the Shajingzi structural belt, northwest Tarim Basin tapped industrial gas flow from the Silurian for the first time. The reservoir-forming model and resource extent need to be made clear urgently. Based on the comprehensive research of drilling,formation testing, geochemical data, and sedimentary and accumulation history, in combination with field surveys, experiments, structure interpretation and reconstruction of structure evolution, it is found that:(1) The northwest Tarim Basin had widespread tidal deltaic deposits in the Silurian period, which contain good reservoir-cap combinations;(2) the Shajingzi fault and associated faults connected the Cambrian-Ordovician source rocks in the Awati sag, and controlled the formation of Silurian structural traps, hence, the traps turned up along the structural belt in an orderly pattern and came together into contiguous tracts;(3) the Silurian petroleum in Shajingzi structural belt was dominated by gas, and the major accumulation period was the Himalayan period when the traps fixed in shape;(4) the Silurian gas resources in the Shajingzi belt were estimated at around 2.018×10^(11)m^(3), and Silurian gas resources of the northwest Tarim Basin were estimated at 2.03×10^(12)m^(3), implying huge exploration potential, so this area will become a major area for reserve and production increase from clastic strata in the basin;(5) with the Shajingzi fault of large scale and long active time connecting deep source rock layers, multiple formations in Lower Paleozoic of Shajingzi structural belt may have breakthroughs in hydrocarbon exploration.展开更多
基金jointly supported by the National Science and Technology Major Project of China (Nos. 2011ZX05002-003-004, 2011ZX05009-002)the research team of Northwest Oilfield Company, SINOPECExploration & Production Research Institute, SINOPEC
文摘With the breakthrough of exploration in Well TP16-1, the lower Kepingtage Formation becomes a key target for petroleum exploration of deep clastic reservoir in Tahe area. In this paper we focused on the research of the reservoir characteristics and its controlling factors in two sub-member formations(S1k11 and S1k13). Based on X-ray diffraction, conventional physical properties data(porosity and permeability) and reservoir storage space data(casting thin section and scanning electron microscope), we determined that the S1k1 Formation belongs to extra-low porosity and permeability reservoir, although the upper S1k13 Formation shows relative better physical characteristic than the lower S1k11 Formation. The development of storage space in the study area is controlled by sedimentary microfacies, diagenesis process. Reservoirs in S1k1 Formation are mainly located in channel(S1k11 sandstones) and sand flat(S1k13 sandstones). The sand flat sediments with a more coarse grain size compared with the channel. In diagenesis, compaction is the major controlling factor for reducing the porosity, followed by cementation. Dissolution of diagenesis is the major controlling factor in enhancing the reservoir porosities. Compared with channel(S1k11) sandstones, sand flat sandstones(S1k13) have better reservoir quality for its weaker compaction, cementation and stronger dissolution. On the basis of sedimentary characteristics(grain size and subfacies), physical property(porosity and permeability) and reservoir storage space, we divide the S1k1 reservoir into three categories(I, II and III). Type I reservoir is high quality reservoir. It is mainly distributed in the south area of S1k11 and S1k13 reservoir. Type II is moderate reservoir. It is located in the middle of S1k11 reservoir and in the north of S1k13 reservoir. Type III is the poor reservoir. It is only located in the north of S1k11 reservoir.
基金Supported by the China Geological Survey Project (DD20190106,DD20190090)。
文摘The Silurian hydrocarbon exploration in the northwest Tarim Basin had long been fruitless, till Well XSD1 drilled in 2018 in the Shajingzi structural belt, northwest Tarim Basin tapped industrial gas flow from the Silurian for the first time. The reservoir-forming model and resource extent need to be made clear urgently. Based on the comprehensive research of drilling,formation testing, geochemical data, and sedimentary and accumulation history, in combination with field surveys, experiments, structure interpretation and reconstruction of structure evolution, it is found that:(1) The northwest Tarim Basin had widespread tidal deltaic deposits in the Silurian period, which contain good reservoir-cap combinations;(2) the Shajingzi fault and associated faults connected the Cambrian-Ordovician source rocks in the Awati sag, and controlled the formation of Silurian structural traps, hence, the traps turned up along the structural belt in an orderly pattern and came together into contiguous tracts;(3) the Silurian petroleum in Shajingzi structural belt was dominated by gas, and the major accumulation period was the Himalayan period when the traps fixed in shape;(4) the Silurian gas resources in the Shajingzi belt were estimated at around 2.018×10^(11)m^(3), and Silurian gas resources of the northwest Tarim Basin were estimated at 2.03×10^(12)m^(3), implying huge exploration potential, so this area will become a major area for reserve and production increase from clastic strata in the basin;(5) with the Shajingzi fault of large scale and long active time connecting deep source rock layers, multiple formations in Lower Paleozoic of Shajingzi structural belt may have breakthroughs in hydrocarbon exploration.