Symmetry of Tzénoff equations for unilateral holonomic system under the infinitesimal transformationsof groups is investigated.Its definitions and discriminant equations of Mei symmetry and Lie symmetry of Tz...Symmetry of Tzénoff equations for unilateral holonomic system under the infinitesimal transformationsof groups is investigated.Its definitions and discriminant equations of Mei symmetry and Lie symmetry of Tzénoffequations are given.Sufficient and necessary condition of Lie symmetry deduced by the Mei symmetry is also given.Hojman conserved quantity of Tzénoff equations for the system above through special Lie symmetry and Lie symmetryin the condition of special Mei symmetry respectively is obtained.展开更多
This paper investigates structure equation and Mei conserved quantity of Mei symmetry of Appell equations for non-Chetaev nonholonomic systems. Appell equations and differential equations of motion for non-Chetaev non...This paper investigates structure equation and Mei conserved quantity of Mei symmetry of Appell equations for non-Chetaev nonholonomic systems. Appell equations and differential equations of motion for non-Chetaev nonholonomic mechanical systems are established. A new expression of the total derivative of the function with respect to time t along the trajectory of a curve of the system is obtained, the definition and the criterion of Mei symmetry of Appell equations under the infinitesimal transformations of groups are also given. The expressions of the structure equation and the Mei conserved quantity of Mei symmetry in the Appell function are obtained. An example is given to illustrate the application of the results.展开更多
Structural equation and Mei conserved quantity of Mei symmetry for Appell equations in holonomic systems with unilateral constraints are investigated. Appell equations and differential equations of motion for holonomi...Structural equation and Mei conserved quantity of Mei symmetry for Appell equations in holonomic systems with unilateral constraints are investigated. Appell equations and differential equations of motion for holonomie mechanic systems with unilateral constraints axe established. The definition and the criterion of Mei symmetry for Appell equations in holonomic systems with unilateral constraints under the infinitesimal transformations of groups axe also given. The expressions of the structural equation and Mei conserved quantity of Mei symmetry for Appell equations in holonomic systems with unilateral constraints expressed by Appell functions are obtained. An example is given to illustrate the application of the results.展开更多
Noether symmetry of Nielsen equation and Noether conserved quantity deduced directly from Noether symmetry for dynamical systems of the relative motion are studied. The definition and criteria of Noether symmetry of a...Noether symmetry of Nielsen equation and Noether conserved quantity deduced directly from Noether symmetry for dynamical systems of the relative motion are studied. The definition and criteria of Noether symmetry of a Nielsen equation under the infinitesimal transformations of groups are given. Expression of Noether conserved quantity deduced directly from Noether symmetry of Nielsen equation for the system are obtained. Finally, an example is given to illustrate the application of the results.展开更多
Mei symmetry and Mei conserved quantity of Nielsen equations for a non-holonomic, non-conservative system of Chetaev's type with variable mass are studied. The differential equations of motion of the Nielsen equation...Mei symmetry and Mei conserved quantity of Nielsen equations for a non-holonomic, non-conservative system of Chetaev's type with variable mass are studied. The differential equations of motion of the Nielsen equation for the system, the definition and criterion of Mei symmetry, and the condition and the form of Mei conserved quantity deduced directly by Mei symmetry for the system are obtained. An example is given to illustrate the application of the results.展开更多
Lie symmetry of Maggi equations is studied. Its determining equation and restriction equation of nonholonomic constraint are given. A Hojman conserved quantity can be deduced directly by using the Lie symmetry. An exa...Lie symmetry of Maggi equations is studied. Its determining equation and restriction equation of nonholonomic constraint are given. A Hojman conserved quantity can be deduced directly by using the Lie symmetry. An example is given to illustrate the application of the result.展开更多
This paper focuses on studying the Lie symmetry and a conserved quantity of a system of first-order differential equations. The determining equations of the Lie symmetry for a system of first-order differential equati...This paper focuses on studying the Lie symmetry and a conserved quantity of a system of first-order differential equations. The determining equations of the Lie symmetry for a system of first-order differential equations, from which a kind of conserved quantity is deduced, are presented. And their general conclusion is applied to a Hamilton system, a Birkhoff system and a generalized Hamilton system. Two examples are given to illustrate the application of the results.展开更多
A type of new conserved quantity deduced from Mei symmetry of Appell equations for a holonomic system with unilateral constraints is investigated. The expressions of new structural equation and new conserved quantity ...A type of new conserved quantity deduced from Mei symmetry of Appell equations for a holonomic system with unilateral constraints is investigated. The expressions of new structural equation and new conserved quantity deduced from Mei symmetry of Appell equations for a holonomic system with unilateral constraints expressed by Appell functions are obtained. An example is given to illustrate the application of the results.展开更多
Based on the infinitesimal and one parameter transformation, the problem of Lie symmetry of three-order Lagrangian equations has been studied. Under Lie transformation, the sufficient and necessary condition which kee...Based on the infinitesimal and one parameter transformation, the problem of Lie symmetry of three-order Lagrangian equations has been studied. Under Lie transformation, the sufficient and necessary condition which keeps three-order Lagrangian equations to be unchanged and the invariant are obtained in this paper.展开更多
A type of structural equation and conserved quantity which are directly induced by Mei symmetry of Nielsen equations for a holonomic system are studied. Under the infinitesimal transformation of the groups, from the d...A type of structural equation and conserved quantity which are directly induced by Mei symmetry of Nielsen equations for a holonomic system are studied. Under the infinitesimal transformation of the groups, from the definition and the criterion of Mei symmetry, a type of structural equation and conserved quantity for the system by proposition 2 are obtained, and the inferences in two special cases are given. Finally, an example is given to illustrate the application of the results.展开更多
The Mei symmetry and Mei conserved quantity of the Nielsen equation for a non-Chetaewtype non-holonomic non-conservative system are studied. The differential equations of motion of the Nielsen equation for the system,...The Mei symmetry and Mei conserved quantity of the Nielsen equation for a non-Chetaewtype non-holonomic non-conservative system are studied. The differential equations of motion of the Nielsen equation for the system, the definition and the criterion of Mei symmetry and the condition and the form of Mei conserved quantities deduced directly from the Mei symmetry for the system are obtained. Finally, an example is given to illustrate the application of the results.展开更多
In the present paper the Lie symmetrical non-Noether conserved quantity of the Poincaré Chetaev equations of a generalized classical mechanics under the general infinitesimal transformations of Lie groups is disc...In the present paper the Lie symmetrical non-Noether conserved quantity of the Poincaré Chetaev equations of a generalized classical mechanics under the general infinitesimal transformations of Lie groups is discussed. First, we establish the determining equations of Lie symmetry of the equations. Second, the Lie symmetrical non-Noether conserved quantity of the equations is deduced. Finally, an example is given to illustrate the application of the results.展开更多
In the present paper the Lie symmetrical non-Noether conserved quantity of the Poincaré-Chetaev equations under the general infinitesimal transformations of Lie groups is discussed. First, we establish the determ...In the present paper the Lie symmetrical non-Noether conserved quantity of the Poincaré-Chetaev equations under the general infinitesimal transformations of Lie groups is discussed. First, we establish the determining equations of Lie symmetry of the equations. Second, the Lie symmetrical non-Noether conserved quantity of the equations is deduced.展开更多
This paper presents a method to find Noether-type conserved quantities and Lie point symmetries for discrete mechanico-electrical dynamical systems,which leave invuriant the set of solutions of the corresponding diffe...This paper presents a method to find Noether-type conserved quantities and Lie point symmetries for discrete mechanico-electrical dynamical systems,which leave invuriant the set of solutions of the corresponding difference scheme. This approach makes it possible to devise techniques for solving the Lagrange Maxwell equations in differences which correspond to mechanico-electrical systems,by adapting existing differential equations.In particular,it obtains a new systematic method to determine both the one-parameter Lie groups and the discrete Noether conserved quantities of Lie point symmetries for mechanico-electrical systems.As an application,it obtains the Lie point symmetries and the conserved quantities for the difference equation of a model that represents a capacitor microphone.展开更多
In this paper,the Mei symmetry of Tzénoff equations for the higher-order nonholonomic system and the new conserved quantities derived from that are researched,and the function expression of new conserved quantiti...In this paper,the Mei symmetry of Tzénoff equations for the higher-order nonholonomic system and the new conserved quantities derived from that are researched,and the function expression of new conserved quantities and criterion equation which deduces these conserved quantities are presented.This result establishes the theory basis for further researches on conservation laws of Tzénoff equations of the higher-order nonholonomic constraint system.展开更多
In this paper,the form invariance and the Lie symmetry of Lagrange's equations for nonconservativesystem in generalized classical mechanics under the infinitesimal transformations of group are studied,and the Noet...In this paper,the form invariance and the Lie symmetry of Lagrange's equations for nonconservativesystem in generalized classical mechanics under the infinitesimal transformations of group are studied,and the Noether'sconserved quantity,the new form conserved quantity,and the Hojman's conserved quantity of system are derived fromthem.Finally,an example is given to illustrate the application of the result.展开更多
The Lie symmetries and conserved quantities of a two-dimensional nonlinear diffusion equation ot concentration are considered. Based on the invariance of the two-dimensional nonlinear diffusion equation of concentrati...The Lie symmetries and conserved quantities of a two-dimensional nonlinear diffusion equation ot concentration are considered. Based on the invariance of the two-dimensional nonlinear diffusion equation of concentration under the infinitesimal transformation with respect to the generalized coordinates and time, the determining equations of Lie symmetries are presented. The Lie groups of transformation and infinitesimal generators of this equation are obtained. The conserved quantities associated with the nonlinear diffusion equation of concentration are derived by integrating the characteristic equations. Also, the solutions of the two-dimensional nonlinear diffusion equation of concentration can be obtained.展开更多
Mei symmetry of Tzenoff equations for nonholonomic systems of non-Chetaev's type under the infinitesimal transformations of groups is studied. Its definitions and discriminant equations of Mei symmetry are given. Suf...Mei symmetry of Tzenoff equations for nonholonomic systems of non-Chetaev's type under the infinitesimal transformations of groups is studied. Its definitions and discriminant equations of Mei symmetry are given. Sufficient and necessary condition of Lie symmetry deduced by the Mei symmetry is also given. Hojman conserved quantity of Tzenoff equations for the systems through Lie symmetry in the condition of special Mei symmetry is obtained.展开更多
In this paper,a new form conserved quantity of differential equations is presented.The conserved quantity is constructed only based on the general Lie group of transformation vector of the differential equations.The f...In this paper,a new form conserved quantity of differential equations is presented.The conserved quantity is constructed only based on the general Lie group of transformation vector of the differential equations.The first-order and second-order differential equations are studied,respectively.Two theorems concerning conserved quantities are proved.The relations between these theorems and preious conservation laws are discussed.A condition is given to exclude trivial conserved quantities.Finally,we give two examples to illustrate the application of the results.展开更多
The Lie symmetries and conserved quantities of the rotational relativistic holonomic and nonholonomic systems were studied. By defining the infinitesimal transformations' generators and by using the invariance of ...The Lie symmetries and conserved quantities of the rotational relativistic holonomic and nonholonomic systems were studied. By defining the infinitesimal transformations' generators and by using the invariance of the differential equations under the infinitesimal transformations, the determining equations of Lie symmetries for the rotational relativistic mechanical systems are established. The structure equations and the forms of conserved quantities are obtained. An example to illustrate the application of the results is given.展开更多
基金National Natural Science Foundation of China under Grant No.10672143
文摘Symmetry of Tzénoff equations for unilateral holonomic system under the infinitesimal transformationsof groups is investigated.Its definitions and discriminant equations of Mei symmetry and Lie symmetry of Tzénoffequations are given.Sufficient and necessary condition of Lie symmetry deduced by the Mei symmetry is also given.Hojman conserved quantity of Tzénoff equations for the system above through special Lie symmetry and Lie symmetryin the condition of special Mei symmetry respectively is obtained.
基金Project supported by the National Natural Science Foundation of China (Grant No 10572021)
文摘This paper investigates structure equation and Mei conserved quantity of Mei symmetry of Appell equations for non-Chetaev nonholonomic systems. Appell equations and differential equations of motion for non-Chetaev nonholonomic mechanical systems are established. A new expression of the total derivative of the function with respect to time t along the trajectory of a curve of the system is obtained, the definition and the criterion of Mei symmetry of Appell equations under the infinitesimal transformations of groups are also given. The expressions of the structure equation and the Mei conserved quantity of Mei symmetry in the Appell function are obtained. An example is given to illustrate the application of the results.
基金Supported by the National Natural Science Foundation of China under Grant No.10572021the Preparatory Research Foundation of Jiangnan University under Grant No.2008LYY011
文摘Structural equation and Mei conserved quantity of Mei symmetry for Appell equations in holonomic systems with unilateral constraints are investigated. Appell equations and differential equations of motion for holonomie mechanic systems with unilateral constraints axe established. The definition and the criterion of Mei symmetry for Appell equations in holonomic systems with unilateral constraints under the infinitesimal transformations of groups axe also given. The expressions of the structural equation and Mei conserved quantity of Mei symmetry for Appell equations in holonomic systems with unilateral constraints expressed by Appell functions are obtained. An example is given to illustrate the application of the results.
基金Supported by the National Natural Science Foundation of China under Grant No.10572021the Preparatory Research Foundation of Jiangnan University under Grant No.2008LYY011
文摘Noether symmetry of Nielsen equation and Noether conserved quantity deduced directly from Noether symmetry for dynamical systems of the relative motion are studied. The definition and criteria of Noether symmetry of a Nielsen equation under the infinitesimal transformations of groups are given. Expression of Noether conserved quantity deduced directly from Noether symmetry of Nielsen equation for the system are obtained. Finally, an example is given to illustrate the application of the results.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10572021)the Preparatory Research Foundation of Jiangnan University,China (Grant No. 2008LYY011)
文摘Mei symmetry and Mei conserved quantity of Nielsen equations for a non-holonomic, non-conservative system of Chetaev's type with variable mass are studied. The differential equations of motion of the Nielsen equation for the system, the definition and criterion of Mei symmetry, and the condition and the form of Mei conserved quantity deduced directly by Mei symmetry for the system are obtained. An example is given to illustrate the application of the results.
基金Sponsored by the National Natural Science Foundation of China(10572021)
文摘Lie symmetry of Maggi equations is studied. Its determining equation and restriction equation of nonholonomic constraint are given. A Hojman conserved quantity can be deduced directly by using the Lie symmetry. An example is given to illustrate the application of the result.
基金Project supported by the National Natural Science Foundation of China (Grant No 10272021) and the Doctoral Program Foundation of Institution of Higher Education of China (Grant No 20040007022).
文摘This paper focuses on studying the Lie symmetry and a conserved quantity of a system of first-order differential equations. The determining equations of the Lie symmetry for a system of first-order differential equations, from which a kind of conserved quantity is deduced, are presented. And their general conclusion is applied to a Hamilton system, a Birkhoff system and a generalized Hamilton system. Two examples are given to illustrate the application of the results.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10572021)the Preparatory Research Foundation of Jiangnan University of China (Grant No. 2008LYY011)
文摘A type of new conserved quantity deduced from Mei symmetry of Appell equations for a holonomic system with unilateral constraints is investigated. The expressions of new structural equation and new conserved quantity deduced from Mei symmetry of Appell equations for a holonomic system with unilateral constraints expressed by Appell functions are obtained. An example is given to illustrate the application of the results.
文摘Based on the infinitesimal and one parameter transformation, the problem of Lie symmetry of three-order Lagrangian equations has been studied. Under Lie transformation, the sufficient and necessary condition which keeps three-order Lagrangian equations to be unchanged and the invariant are obtained in this paper.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11142014 and 61178032)
文摘A type of structural equation and conserved quantity which are directly induced by Mei symmetry of Nielsen equations for a holonomic system are studied. Under the infinitesimal transformation of the groups, from the definition and the criterion of Mei symmetry, a type of structural equation and conserved quantity for the system by proposition 2 are obtained, and the inferences in two special cases are given. Finally, an example is given to illustrate the application of the results.
基金supported by the National Natural Science Foundation of China(Grant No 10572021)the Preparatory Research Foundation of Jiangnan University,China(Grant No 2008LYY011)
文摘The Mei symmetry and Mei conserved quantity of the Nielsen equation for a non-Chetaewtype non-holonomic non-conservative system are studied. The differential equations of motion of the Nielsen equation for the system, the definition and the criterion of Mei symmetry and the condition and the form of Mei conserved quantities deduced directly from the Mei symmetry for the system are obtained. Finally, an example is given to illustrate the application of the results.
文摘In the present paper the Lie symmetrical non-Noether conserved quantity of the Poincaré Chetaev equations of a generalized classical mechanics under the general infinitesimal transformations of Lie groups is discussed. First, we establish the determining equations of Lie symmetry of the equations. Second, the Lie symmetrical non-Noether conserved quantity of the equations is deduced. Finally, an example is given to illustrate the application of the results.
文摘In the present paper the Lie symmetrical non-Noether conserved quantity of the Poincaré-Chetaev equations under the general infinitesimal transformations of Lie groups is discussed. First, we establish the determining equations of Lie symmetry of the equations. Second, the Lie symmetrical non-Noether conserved quantity of the equations is deduced.
基金Project supported by the National Natural Science Foundation of China (Grants Nos 10672143 and 60575055)State Key Laboratory of Scientific and Engineering Computing,Chinese Academy of Sciences+1 种基金Tang Yi-Fa acknowledges the support under Sabbatical Program (SAB2006-0070) of the Spanish Ministry of Education and ScienceJimnez S and Vzquez L acknowledge support of the Spanish Ministry of Education and Science (Grant No MTM2005-05573)
文摘This paper presents a method to find Noether-type conserved quantities and Lie point symmetries for discrete mechanico-electrical dynamical systems,which leave invuriant the set of solutions of the corresponding difference scheme. This approach makes it possible to devise techniques for solving the Lagrange Maxwell equations in differences which correspond to mechanico-electrical systems,by adapting existing differential equations.In particular,it obtains a new systematic method to determine both the one-parameter Lie groups and the discrete Noether conserved quantities of Lie point symmetries for mechanico-electrical systems.As an application,it obtains the Lie point symmetries and the conserved quantities for the difference equation of a model that represents a capacitor microphone.
基金Project supported by the National Natural Science Foundation of China(Grant No.10972127)
文摘In this paper,the Mei symmetry of Tzénoff equations for the higher-order nonholonomic system and the new conserved quantities derived from that are researched,and the function expression of new conserved quantities and criterion equation which deduces these conserved quantities are presented.This result establishes the theory basis for further researches on conservation laws of Tzénoff equations of the higher-order nonholonomic constraint system.
基金National Natural Science Foundation of China under Grant No.10272034the Doctoral Program Foundation of China
文摘In this paper,the form invariance and the Lie symmetry of Lagrange's equations for nonconservativesystem in generalized classical mechanics under the infinitesimal transformations of group are studied,and the Noether'sconserved quantity,the new form conserved quantity,and the Hojman's conserved quantity of system are derived fromthem.Finally,an example is given to illustrate the application of the result.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10672143 and 60575055)
文摘The Lie symmetries and conserved quantities of a two-dimensional nonlinear diffusion equation ot concentration are considered. Based on the invariance of the two-dimensional nonlinear diffusion equation of concentration under the infinitesimal transformation with respect to the generalized coordinates and time, the determining equations of Lie symmetries are presented. The Lie groups of transformation and infinitesimal generators of this equation are obtained. The conserved quantities associated with the nonlinear diffusion equation of concentration are derived by integrating the characteristic equations. Also, the solutions of the two-dimensional nonlinear diffusion equation of concentration can be obtained.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10672143 and 10572021
文摘Mei symmetry of Tzenoff equations for nonholonomic systems of non-Chetaev's type under the infinitesimal transformations of groups is studied. Its definitions and discriminant equations of Mei symmetry are given. Sufficient and necessary condition of Lie symmetry deduced by the Mei symmetry is also given. Hojman conserved quantity of Tzenoff equations for the systems through Lie symmetry in the condition of special Mei symmetry is obtained.
基金Project supported by the National Natural Science Foundation of China under Grant No.10172056 and the ScienceResearch of the Education Bureau of Anhui Province under Grant No.2006kj263.
文摘In this paper,a new form conserved quantity of differential equations is presented.The conserved quantity is constructed only based on the general Lie group of transformation vector of the differential equations.The first-order and second-order differential equations are studied,respectively.Two theorems concerning conserved quantities are proved.The relations between these theorems and preious conservation laws are discussed.A condition is given to exclude trivial conserved quantities.Finally,we give two examples to illustrate the application of the results.
文摘The Lie symmetries and conserved quantities of the rotational relativistic holonomic and nonholonomic systems were studied. By defining the infinitesimal transformations' generators and by using the invariance of the differential equations under the infinitesimal transformations, the determining equations of Lie symmetries for the rotational relativistic mechanical systems are established. The structure equations and the forms of conserved quantities are obtained. An example to illustrate the application of the results is given.