The paper presents a quaternion approach of giving a closed form solution of the motion in a central force field relative to a rotating reference frame. This new method involves two quaternion operators: the first one...The paper presents a quaternion approach of giving a closed form solution of the motion in a central force field relative to a rotating reference frame. This new method involves two quaternion operators: the first one transforms the motion from a non-inertial reference frame to a inertial one with a very significant consequence of vanishing all the non-inertial terms (Coriolis and centripetal forces);the second quaternion operator provides the solution of the motion in the noninertial reference frame by applying it to the solution in the inertial reference frame. This process will govern the inverse transformation of the motion and is proved on two particular cases, the Foucault Pendulum and Keplerian motions problems relative to rotating reference frames.展开更多
The present study deals with a traditional physical problem: the solution of the Kepler’s equation for all conics (ellipse, hyperbola or parabola). Solution of the universal Kepler’s equation in closed form is obtai...The present study deals with a traditional physical problem: the solution of the Kepler’s equation for all conics (ellipse, hyperbola or parabola). Solution of the universal Kepler’s equation in closed form is obtained with the help of the two-dimensional Laplace technique, expressing the universal functions as a function of the universal anomaly and the time. Combining these new expressions of the universal functions and their identities, we establish one biquadratic equation for universal anomaly (χ) for all conics;solving this new equation, we have a new exact solution of the present problem for the universal anomaly as a function of the time. The verifying of the universal Kepler’s equation and the traditional forms of Kepler’s equation from this new solution are discussed. The plots of the elliptic, hyperbolic or parabolic Keplerian orbits are also given, using this new solution.展开更多
文摘The paper presents a quaternion approach of giving a closed form solution of the motion in a central force field relative to a rotating reference frame. This new method involves two quaternion operators: the first one transforms the motion from a non-inertial reference frame to a inertial one with a very significant consequence of vanishing all the non-inertial terms (Coriolis and centripetal forces);the second quaternion operator provides the solution of the motion in the noninertial reference frame by applying it to the solution in the inertial reference frame. This process will govern the inverse transformation of the motion and is proved on two particular cases, the Foucault Pendulum and Keplerian motions problems relative to rotating reference frames.
文摘The present study deals with a traditional physical problem: the solution of the Kepler’s equation for all conics (ellipse, hyperbola or parabola). Solution of the universal Kepler’s equation in closed form is obtained with the help of the two-dimensional Laplace technique, expressing the universal functions as a function of the universal anomaly and the time. Combining these new expressions of the universal functions and their identities, we establish one biquadratic equation for universal anomaly (χ) for all conics;solving this new equation, we have a new exact solution of the present problem for the universal anomaly as a function of the time. The verifying of the universal Kepler’s equation and the traditional forms of Kepler’s equation from this new solution are discussed. The plots of the elliptic, hyperbolic or parabolic Keplerian orbits are also given, using this new solution.