To separate each pattern class more strongly and deal with nonlinear ease, a new nonlinear manifold learning algorithm named supervised kernel uneorrelated diseriminant neighborhood preserving projections (SKUDNPP) ...To separate each pattern class more strongly and deal with nonlinear ease, a new nonlinear manifold learning algorithm named supervised kernel uneorrelated diseriminant neighborhood preserving projections (SKUDNPP) is proposed. The algorithm utilizes supervised weight and kernel technique which makes the algorithm cope with classifying and nonlinear problems competently. The within-class geometric structure is preserved, while maximizing the between-class distance. And the features extracted are statistically uneorrelated by introducing an uneorrelated constraint. Experiment results on millimeter wave (MMW) radar target recognition show that the method can give competitive results in comparison with current papular algorithms.展开更多
基金Natural Science Foundation of Jiangsu Higher Education Institutions of China (No. 11KJB510020)National Natural Science Foundation of China (No. 61171077)College Industrialization Project of Jiangsu Province,China (No. JH09-24)
文摘To separate each pattern class more strongly and deal with nonlinear ease, a new nonlinear manifold learning algorithm named supervised kernel uneorrelated diseriminant neighborhood preserving projections (SKUDNPP) is proposed. The algorithm utilizes supervised weight and kernel technique which makes the algorithm cope with classifying and nonlinear problems competently. The within-class geometric structure is preserved, while maximizing the between-class distance. And the features extracted are statistically uneorrelated by introducing an uneorrelated constraint. Experiment results on millimeter wave (MMW) radar target recognition show that the method can give competitive results in comparison with current papular algorithms.