Accurate load prediction plays an important role in smart power management system, either for planning, facing the increasing of load demand, maintenance issues, or power distribution system. In order to achieve a rea...Accurate load prediction plays an important role in smart power management system, either for planning, facing the increasing of load demand, maintenance issues, or power distribution system. In order to achieve a reasonable prediction, authors have applied and compared two features extraction technique presented by kernel partial least square regression and kernel principal component regression, and both of them are carried out by polynomial and Gaussian kernels to map the original features’ to high dimension features’ space, and then draw new predictor variables known as scores and loadings, while kernel principal component regression draws the predictor features to construct new predictor variables without any consideration to response vector. In contrast, kernel partial least square regression does take the response vector into consideration. Models are simulated by three different cities’ electric load data, which used historical load data in addition to weekends and holidays as common predictor features for all models. On the other hand temperature has been used for only one data as a comparative study to measure its effect. Models’ results evaluated by three statistic measurements, show that Gaussian Kernel Partial Least Square Regression offers the more powerful features and significantly can improve the load prediction performance than other presented models.展开更多
传统的多变量统计过程监控技术采用的故障模型是线性的,该模型在具有强非线性特征的工业过程的故障诊断及预测方面的效果不够理想。针对复杂系统,需采用非线性数据模型的故障描述,研究基于核主元分析(Kernel Principal Component Analys...传统的多变量统计过程监控技术采用的故障模型是线性的,该模型在具有强非线性特征的工业过程的故障诊断及预测方面的效果不够理想。针对复杂系统,需采用非线性数据模型的故障描述,研究基于核主元分析(Kernel Principal Component Analysis,KPCA),KPCA数据重构的最优参数选择方法十分必要。采用网格搜索法和交叉验证法相结合的方法确定KPCA算法和支持向量机(Support VectorMahine,SVM),SVM回归算法的最优参数,使重构误差为最小。以TE过程为仿真实例,仿真结果表明:所提出的基于KPCA数据重构的最优参数选择方法是有效的。展开更多
文摘Accurate load prediction plays an important role in smart power management system, either for planning, facing the increasing of load demand, maintenance issues, or power distribution system. In order to achieve a reasonable prediction, authors have applied and compared two features extraction technique presented by kernel partial least square regression and kernel principal component regression, and both of them are carried out by polynomial and Gaussian kernels to map the original features’ to high dimension features’ space, and then draw new predictor variables known as scores and loadings, while kernel principal component regression draws the predictor features to construct new predictor variables without any consideration to response vector. In contrast, kernel partial least square regression does take the response vector into consideration. Models are simulated by three different cities’ electric load data, which used historical load data in addition to weekends and holidays as common predictor features for all models. On the other hand temperature has been used for only one data as a comparative study to measure its effect. Models’ results evaluated by three statistic measurements, show that Gaussian Kernel Partial Least Square Regression offers the more powerful features and significantly can improve the load prediction performance than other presented models.
文摘传统的多变量统计过程监控技术采用的故障模型是线性的,该模型在具有强非线性特征的工业过程的故障诊断及预测方面的效果不够理想。针对复杂系统,需采用非线性数据模型的故障描述,研究基于核主元分析(Kernel Principal Component Analysis,KPCA),KPCA数据重构的最优参数选择方法十分必要。采用网格搜索法和交叉验证法相结合的方法确定KPCA算法和支持向量机(Support VectorMahine,SVM),SVM回归算法的最优参数,使重构误差为最小。以TE过程为仿真实例,仿真结果表明:所提出的基于KPCA数据重构的最优参数选择方法是有效的。