Aiming at the large cost of calculating variable bandwidth kernel particle filter and the high complexity of its algorithm,a self-adjusting kernel function particle filter is presented. Kernel density estimation is fa...Aiming at the large cost of calculating variable bandwidth kernel particle filter and the high complexity of its algorithm,a self-adjusting kernel function particle filter is presented. Kernel density estimation is facilitated to iterate and obtain new particle set. And the standard deviation of particle is introduced in the kernel bandwidth. According to the characteristics of particle distribution,the bandwidth is dynamically adjusted,and the particle distribution can thus be more close to the posterior probability density model of the system. Meanwhile,the kernel density is used to estimate the weight of updating particle and the system state. The simulation results show the feasibility and effectiveness of the proposed algorithm.展开更多
A novel particle filter bandwidth adaption for kernel particle filter (BAKPF) is proposed. Selection of the kernel bandwidth is a critical issue in kernel density estimation (KDE). The plug-in method is adopted to...A novel particle filter bandwidth adaption for kernel particle filter (BAKPF) is proposed. Selection of the kernel bandwidth is a critical issue in kernel density estimation (KDE). The plug-in method is adopted to get the global fixed bandwidth by optimizing the asymptotic mean integrated squared error (AMISE) firstly. Then, particle-driven bandwidth selection is invoked in the KDE. To get a more effective allocation of the particles, the KDE with adap- tive bandwidth in the BAKPF is used to approximate the posterior probability density function (PDF) by moving particles toward the posterior. A closed-form expression of the true distribution is given. The simulation results show that the proposed BAKPF performs better than the standard particle filter (PF), unscented particle filter (UPF) and the kernel particle filter (KPF) both in efficiency and estimation precision.展开更多
Upscaling of primary geological models with huge cells, especially in porous media, is the first step in fluid flow simulation. Numerical methods are often used to solve the models. The upscaling method must preserve ...Upscaling of primary geological models with huge cells, especially in porous media, is the first step in fluid flow simulation. Numerical methods are often used to solve the models. The upscaling method must preserve the important properties of the spatial distribution of the reservoir properties. An grid upscaling method based on adaptive bandwidth in kernel function is proposed according to the spatial distribution of property. This type of upscaling reduces the number of cells, while preserves the main heterogeneity features of the original fine model. The key point of the paper is upscaling two reservoir properties simultaneously. For each reservoir feature, the amount of bandwidth or optimal threshold is calculated and the results of the upscaling are obtained. Then two approaches are used to upscaling two properties simultaneously based on maximum bandwidth and minimum bandwidth. In fact, we now have a finalized upscaled model for both reservoir properties for each approach in which not only the number of their cells, but also the locations of the cells are equal. The upscaling error of the minimum bandwidth approach is less than that of the maximum bandwidth approach.展开更多
In this paper, regression function estimation from independent and identically distributed data is considered. We establish strong pointwise consistency of the famous Nadaraya-Watson estimator under weaker conditions ...In this paper, regression function estimation from independent and identically distributed data is considered. We establish strong pointwise consistency of the famous Nadaraya-Watson estimator under weaker conditions which permit to apply kernels with unbounded support and even not integrable ones and provide a general approach for constructing strongly consistent kernel estimates of regression functions.展开更多
基金Supported by the National Natural Science Foundation of China(60972059)the General Project of Science and Technology of Xuzhou City(XM12B002)
文摘Aiming at the large cost of calculating variable bandwidth kernel particle filter and the high complexity of its algorithm,a self-adjusting kernel function particle filter is presented. Kernel density estimation is facilitated to iterate and obtain new particle set. And the standard deviation of particle is introduced in the kernel bandwidth. According to the characteristics of particle distribution,the bandwidth is dynamically adjusted,and the particle distribution can thus be more close to the posterior probability density model of the system. Meanwhile,the kernel density is used to estimate the weight of updating particle and the system state. The simulation results show the feasibility and effectiveness of the proposed algorithm.
基金supported by the National Natural Science Foundation of China (60736043 60805012)the Fundamental Research Funds for the Central Universities (K50510020032)
文摘A novel particle filter bandwidth adaption for kernel particle filter (BAKPF) is proposed. Selection of the kernel bandwidth is a critical issue in kernel density estimation (KDE). The plug-in method is adopted to get the global fixed bandwidth by optimizing the asymptotic mean integrated squared error (AMISE) firstly. Then, particle-driven bandwidth selection is invoked in the KDE. To get a more effective allocation of the particles, the KDE with adap- tive bandwidth in the BAKPF is used to approximate the posterior probability density function (PDF) by moving particles toward the posterior. A closed-form expression of the true distribution is given. The simulation results show that the proposed BAKPF performs better than the standard particle filter (PF), unscented particle filter (UPF) and the kernel particle filter (KPF) both in efficiency and estimation precision.
文摘Upscaling of primary geological models with huge cells, especially in porous media, is the first step in fluid flow simulation. Numerical methods are often used to solve the models. The upscaling method must preserve the important properties of the spatial distribution of the reservoir properties. An grid upscaling method based on adaptive bandwidth in kernel function is proposed according to the spatial distribution of property. This type of upscaling reduces the number of cells, while preserves the main heterogeneity features of the original fine model. The key point of the paper is upscaling two reservoir properties simultaneously. For each reservoir feature, the amount of bandwidth or optimal threshold is calculated and the results of the upscaling are obtained. Then two approaches are used to upscaling two properties simultaneously based on maximum bandwidth and minimum bandwidth. In fact, we now have a finalized upscaled model for both reservoir properties for each approach in which not only the number of their cells, but also the locations of the cells are equal. The upscaling error of the minimum bandwidth approach is less than that of the maximum bandwidth approach.
文摘In this paper, regression function estimation from independent and identically distributed data is considered. We establish strong pointwise consistency of the famous Nadaraya-Watson estimator under weaker conditions which permit to apply kernels with unbounded support and even not integrable ones and provide a general approach for constructing strongly consistent kernel estimates of regression functions.