期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
GENERALIZATION PERFORMANCE OF MULTI-CATEGORY KERNEL MACHINES——In Memory of Professor Sun Yongsheng
1
作者 Hong Chen Luoqing Li 《Analysis in Theory and Applications》 2007年第2期188-195,共8页
Support vector machines are originally designed for binary classification. How to effectively extend it for multi-class classification is still an on-going research issue. In this paper, we consider kernel machines wh... Support vector machines are originally designed for binary classification. How to effectively extend it for multi-class classification is still an on-going research issue. In this paper, we consider kernel machines which are natural extensions of multi-category support vector machines originally proposed by Crammer and Singer. Based on the algorithm stability, we obtain the generalization error bounds for the kernel machines proposed in the paper. 展开更多
关键词 kernel machine uniform stability generalization error
下载PDF
核机器集成学习算法的误差分析
2
作者 饶峰 《重庆文理学院学报(自然科学版)》 2010年第4期61-64,共4页
针对偏置b的一般情况,估计核机器集成学习算法的排一误差和推广误差的界.结果表明,集成学习算法理论上可以提高核机器的稳定性.
关键词 核机器集成 排一误差 稳定性
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部