A high-precision regional gravity field model is significant in various geodesy applications.In the field of modelling regional gravity fields,the spherical radial basis functions(SRBFs)approach has recently gained wi...A high-precision regional gravity field model is significant in various geodesy applications.In the field of modelling regional gravity fields,the spherical radial basis functions(SRBFs)approach has recently gained widespread attention,while the modelling precision is primarily influenced by the base function network.In this study,we propose a method for constructing a data-adaptive network of SRBFs using a modified Hierarchical Density-Based Spatial Clustering of Applications with Noise(HDBSCAN)algorithm,and the performance of the algorithm is verified by the observed gravity data in the Auvergne area.Furthermore,the turning point method is used to optimize the bandwidth of the basis function spectrum,which satisfies the demand for both high-precision gravity field and quasi-geoid modelling simultaneously.Numerical experimental results indicate that our algorithm has an accuracy of about 1.58 mGal in constructing the gravity field model and about 0.03 m in the regional quasi-geoid model.Compared to the existing methods,the number of SRBFs used for modelling has been reduced by 15.8%,and the time cost to determine the centre positions of SRBFs has been saved by 12.5%.Hence,the modified HDBSCAN algorithm presented here is a suitable design method for constructing the SRBF data adaptive network.展开更多
A support vector machine (SVM) with quadratic polynomial kernel function based nonlinear model one-step-ahead predictive controller is presented. The SVM based predictive model is established with black-box identifica...A support vector machine (SVM) with quadratic polynomial kernel function based nonlinear model one-step-ahead predictive controller is presented. The SVM based predictive model is established with black-box identification method. By solving a cubic equation in the feature space, an explicit predictive control law is obtained through the predictive control mechanism. The effect of controller is demonstrated on a recognized benchmark problem and on the control of continuous-stirred tank reactor (CSTR). Simulation results show that SVM with quadratic polynomial kernel function based predictive controller can be well applied to nonlinear systems, with good performance in following reference trajectory as well as in disturbance-rejection.展开更多
Landslide probability prediction plays an important role in understanding landslide information in advance and taking preventive measures.Many factors can influence the occurrence of landslides,which is easy to have a...Landslide probability prediction plays an important role in understanding landslide information in advance and taking preventive measures.Many factors can influence the occurrence of landslides,which is easy to have a curse of dimensionality and thus lead to reduce prediction accuracy.Then the generalization ability of the model will also decline sharply when there are only small samples.To reduce the dimension of calculation and balance the model’s generalization and learning ability,this study proposed a landslide prediction method based on improved principal component analysis(PCA)and mixed kernel function least squares support vector regression(LSSVR)model.First,the traditional PCA was introduced with the idea of linear discrimination,and the dimensions of initial influencing factors were reduced from 8 to 3.The improved PCA can not only weight variables but also extract the original feature.Furthermore,combined with global and local kernel function,the mixed kernel function LSSVR model was framed to improve the generalization ability.Whale optimization algorithm(WOA)was used to optimize the parameters.Moreover,Root Mean Square Error(RMSE),the sum of squared errors(SSE),Mean Absolute Error(MAE),Mean Absolute Precentage Error(MAPE),and reliability were employed to verify the performance of the model.Compared with radial basis function(RBF)LSSVR model,Elman neural network model,and fuzzy decision model,the proposed method has a smaller deviation.Finally,the landslide warning level obtained from the landslide probability can also provide references for relevant decision-making departments in emergency response.展开更多
A fast algorithm based on the grayscale distribution of infrared target and the weighted kernel function was proposed for the moving target detection(MTD) in dynamic scene of image series. This algorithm is used to de...A fast algorithm based on the grayscale distribution of infrared target and the weighted kernel function was proposed for the moving target detection(MTD) in dynamic scene of image series. This algorithm is used to deal with issues like the large computational complexity, the fluctuation of grayscale, and the noise in infrared images. Four characteristic points were selected by analyzing the grayscale distribution in infrared image, of which the series was quickly matched with an affine transformation model. The image was then divided into 32×32 squares and the gray-weighted kernel(GWK) for each square was calculated. At last, the MTD was carried out according to the variation of the four GWKs. The results indicate that the MTD can be achieved in real time using the algorithm with the fluctuations of grayscale and noise can be effectively suppressed. The detection probability is greater than 90% with the false alarm rate lower than 5% when the calculation time is less than 40 ms.展开更多
The main objective of this work is to decompose orthogonally the reproducing kernels Hilbert space using any conditionally positive definite kernels into smaller ones by introducing the theory of power kernels, and to...The main objective of this work is to decompose orthogonally the reproducing kernels Hilbert space using any conditionally positive definite kernels into smaller ones by introducing the theory of power kernels, and to show how to do this decomposition recur- sively. It may be used to split large interpolation problems into smaller ones with different kernels which are related to the original kernels. To reach this objective, we will reconstruct the reproducing kernels Hilbert space for the normalized and the extended kernels and give the recursive algorithm of this decomposition.展开更多
Based on the existing continuous borehole strain observation,the multiquadric function fitting method was used to deal with time series data. The impact of difference kernel function parameters was discussed to obtain...Based on the existing continuous borehole strain observation,the multiquadric function fitting method was used to deal with time series data. The impact of difference kernel function parameters was discussed to obtain a valuable fitting result,from which the physical connotation of the original data and its possible applications were analyzed.Meanwhile,a brief comparison was made between the results of multiquadric function fitting and polynomial fitting.展开更多
A polynomial interior-point algorithm is presented for monotone linear complementarity problem (MLCP) based on a class of kernel functions with the general barrier term, which are called general kernel functions. Un...A polynomial interior-point algorithm is presented for monotone linear complementarity problem (MLCP) based on a class of kernel functions with the general barrier term, which are called general kernel functions. Under the mild conditions for the barrier term, the complexity bound of algorithm in terms of such kernel function and its derivatives is obtained. The approach is actually an extension of the existing work which only used the specific kernel functions for the MLCP.展开更多
α-diversity describes species diversity at local scales.The Simpson’s and Shannon-Wiener indices are widely used to characterizeα-diversity based on species abundances within a fixed study site(e.g.,a quadrat or pl...α-diversity describes species diversity at local scales.The Simpson’s and Shannon-Wiener indices are widely used to characterizeα-diversity based on species abundances within a fixed study site(e.g.,a quadrat or plot).Although such indices provide overall diversity estimates that can be analyzed,their values are not spatially continuous nor applicable in theory to any point within the study region,and thus they cannot be treated as spatial covariates for analyses of other variables.Herein,we extended the Simpson’s and Shannon-Wiener indices to create point estimates ofα-diversity for any location based on spatially explicit species occurrences within different bandwidths(i.e.,radii,with the location of interest as the center).For an arbitrary point in the study region,species occurrences within the circle plotting the bandwidth were weighted according to their distance from the center using a tri-cube kernel function,with occurrences closer to the center having greater weight than more distant ones.These novel kernel-basedα-diversity indices were tested using a tree dataset from a 400 m×400 m study region comprising a 200 m×200 m core region surrounded by a 100-m width buffer zone.Our newly extendedα-diversity indices did not disagree qualitatively with the traditional indices,and the former were slightly lower than the latter by<2%at medium and large band widths.The present work demonstrates the feasibility of using kernel-basedα-diversity indices to estimate diversity at any location in the study region and allows them to be used as quantifiable spatial covariates or predictors for other dependent variables of interest in future ecological studies.Spatially continuousα-diversity indices are useful to compare and monitor species trends in space and time,which is valuable for conservation practitioners.展开更多
In this paper, we compute the Bergman kernel function on WIII.and RIII(q) denote the Cartan domain of the third class. Because domain WIII is neither homogeneous domain nor Reinhardt domain, we will use a new way to s...In this paper, we compute the Bergman kernel function on WIII.and RIII(q) denote the Cartan domain of the third class. Because domain WIII is neither homogeneous domain nor Reinhardt domain, we will use a new way to solve this problem. First, we give a holomorphic automorphism group, such that for any Zo, there exists an element of this group, which maps (W, Zo) into (W,O). Second, introduce the concept of semi-Reinhardt and discuss the complete orthonormal system of this domain.展开更多
Is this paper we shall give cm asymptotic expansion formula of the kernel functim for the Quasi Faurier-Legendre series on an ellipse, whose error is 0(1/n2) and then applying it we shall sham an analogue of an exact ...Is this paper we shall give cm asymptotic expansion formula of the kernel functim for the Quasi Faurier-Legendre series on an ellipse, whose error is 0(1/n2) and then applying it we shall sham an analogue of an exact result in trigonometric series.展开更多
In polyester fiber industrial processes,the prediction of key performance indicators is vital for product quality.The esterification process is an indispensable step in the polyester polymerization process.It has the ...In polyester fiber industrial processes,the prediction of key performance indicators is vital for product quality.The esterification process is an indispensable step in the polyester polymerization process.It has the characteristics of strong coupling,nonlinearity and complex mechanism.To solve these problems,we put forward a multi-output Gaussian process regression(MGPR)model based on the combined kernel function for the polyester esterification process.Since the seasonal and trend decomposition using loess(STL)can extract the periodic and trend characteristics of time series,a combined kernel function based on the STL and the kernel function analysis is constructed for the MGPR.The effectiveness of the proposed model is verified by the actual polyester esterification process data collected from fiber production.展开更多
Let {Xn, n≥1} be a strictly stationary sequence of random variables, which are either associated or negatively associated, f(.) be their common density. In this paper, the author shows a central limit theorem for a k...Let {Xn, n≥1} be a strictly stationary sequence of random variables, which are either associated or negatively associated, f(.) be their common density. In this paper, the author shows a central limit theorem for a kernel estimate of f(.) under certain regular conditions.展开更多
The analysis of microstates in EEG signals is a crucial technique for understanding the spatiotemporal dynamics of brain electrical activity.Traditional methods such as Atomic Agglomerative Hierarchical Clustering(AAH...The analysis of microstates in EEG signals is a crucial technique for understanding the spatiotemporal dynamics of brain electrical activity.Traditional methods such as Atomic Agglomerative Hierarchical Clustering(AAHC),K-means clustering,Principal Component Analysis(PCA),and Independent Component Analysis(ICA)are limited by a fixed number of microstate maps and insufficient capability in cross-task feature extraction.Tackling these limitations,this study introduces a Global Map Dissimilarity(GMD)-driven density canopy K-means clustering algorithm.This innovative approach autonomously determines the optimal number of EEG microstate topographies and employs Gaussian kernel density estimation alongside the GMD index for dynamic modeling of EEG data.Utilizing this advanced algorithm,the study analyzes the Motor Imagery(MI)dataset from the GigaScience database,GigaDB.The findings reveal six distinct microstates during actual right-hand movement and five microstates across other task conditions,with microstate C showing superior performance in all task states.During imagined movement,microstate A was significantly enhanced.Comparison with existing algorithms indicates a significant improvement in clustering performance by the refined method,with an average Calinski-Harabasz Index(CHI)of 35517.29 and a Davis-Bouldin Index(DBI)average of 2.57.Furthermore,an information-theoretical analysis of the microstate sequences suggests that imagined movement exhibits higher complexity and disorder than actual movement.By utilizing the extracted microstate sequence parameters as features,the improved algorithm achieved a classification accuracy of 98.41%in EEG signal categorization for motor imagery.A performance of 78.183%accuracy was achieved in a four-class motor imagery task on the BCI-IV-2a dataset.These results demonstrate the potential of the advanced algorithm in microstate analysis,offering a more effective tool for a deeper understanding of the spatiotemporal features of EEG signals.展开更多
Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a...Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a SVM with spline kernel function. With the help of this model, nonlinear model predictive control can be transformed to linear model predictive control, and consequently a unified analytical solution of optimal input of multi-step-ahead predictive control is possible to derive. This algorithm does not require online iterative optimization in order to be suitable for real-time control with less calculation. The simulation results of pH neutralization process and CSTR reactor show the effectiveness and advantages of the presented algorithm.展开更多
The simulation of crack propagation processes in rock engineering has been not only a research hot spot among scholars but also a challenge.Based on this background,a new numerical method named improved kernel of smoo...The simulation of crack propagation processes in rock engineering has been not only a research hot spot among scholars but also a challenge.Based on this background,a new numerical method named improved kernel of smoothed particle hydrodynamics(IKSPH)has been put forward.By improving the kernel function in the traditional smoothed particle hydrodynamics(SPH)method,the brittle fracture characteristics of the base particles are realized.The particle domain searching method(PDSM)has also been put forward to generate the arbitrary complex fissure networks.Three numerical examples are analyzed to validate the efficiency of IKSPH and PDSM,which can correctly reveal the morphology of wing crack and the laws of crack coalescence compared with previous experimental and numerical studies.Finally,a rock slope model with complex joints is numerically simulated and the progressive failure processes are exhibited,which indicates that the IKSPH method can be well applied to rock mechanics engineering.The research results showed that IKSPH method reduces the programming difficulties and avoids the traditional grid distortion,which can provide some references for the application of IKSPH to rock mechanics engineering and the understanding of rock fracture mechanisms.展开更多
A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established...A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established by black-box identification. And a quadratic objective function with receding horizon was selected to obtain the controller output. By solving a nonlinear optimization problem with equality constraint of model output and boundary constraint of controller output using Nelder-Mead simplex direct search method, a sub-optimal control law was achieved in feature space. The effect of the controller was demonstrated on a recognized benchmark problem and a continuous-stirred tank reactor. The simulation results show that the multi-step-ahead predictive controller can be well applied to nonlinear system, with better performance in following reference trajectory and disturbance-rejection.展开更多
This study focuses on China's coastal area and its marine economic development. Applying the information diffusion method, the study establishes a kernel density function and its decomposition using a marine econo...This study focuses on China's coastal area and its marine economic development. Applying the information diffusion method, the study establishes a kernel density function and its decomposition using a marine economic per capita as the index of the model to depict the dynamic evolution law and the internal influential factors of the Chinese marine economy during 1996–2013. The relative development rate was introduced to analyze the spatial differences in the marine economy's development. In this way, space and time dimensions fully characterized the evolution of the Chinese marine economy. Additionally, the influence of growth and inequality in the process of its development can be analyzed. The study shows that the Chinese marine economy as a whole has been growing, and regional marine economic development is relatively coordinated. In addition, the marine economy began to develop even more rapidly after 2004. There are three factors affecting the dynamic evolution of China's marine economy: first, the most influential mean effect, followed by, second, the variance effect, and third, the least influential residual effect. The biggest influence on the dynamic evolution of the marine economy is the improvement of the development level of the marine economy in the coastal area. Meanwhile, due to the existence of inequality, provinces at higher development levels are more dispersed. Furthermore, the existence of the residual effect weakens the influence of the mean effect, and the influence on the dynamic evolution of the marine economy continuously increases. In the analysis of the influencing factors of the evolution and spatial difference of marine economic development, the level of opening to the outside world, the level of investment in fixed assets and the industrial structure have a positive role in promoting economic development. However, capital investment in scientific human research has a negative correlation with economic development, and does not pass the significant test. The difference in regional development levels and development speed is also very apparent; namely, the provinces with higher development levels generally displayed faster development speeds while those with lower development levels showed slower development speeds across the four periods analyzed.展开更多
A prediction control algorithm is presented based on least squares support vector machines (LS-SVM) model for a class of complex systems with strong nonlinearity. The nonlinear off-line model of the controlled plant i...A prediction control algorithm is presented based on least squares support vector machines (LS-SVM) model for a class of complex systems with strong nonlinearity. The nonlinear off-line model of the controlled plant is built by LS-SVM with radial basis function (RBF) kernel. In the process of system running, the off-line model is linearized at each sampling instant, and the generalized prediction control (GPC) algorithm is employed to implement the prediction control for the controlled plant. The obtained algorithm is applied to a boiler temperature control system with complicated nonlinearity and large time delay. The results of the experiment verify the effectiveness and merit of the algorithm.展开更多
Used for industrial process with different degree of nonlinearity, the two predictive control algorithms presented in this paper are based on Least Squares Support Vector Machines (LS-SVM) model. For the weakly nonlin...Used for industrial process with different degree of nonlinearity, the two predictive control algorithms presented in this paper are based on Least Squares Support Vector Machines (LS-SVM) model. For the weakly nonlinear system, the system model is built by using LS-SVM with linear kernel function, and then the obtained linear LS-SVM model is transformed into linear input-output relation of the controlled system. However, for the strongly nonlinear system, the off-line model of the controlled system is built by using LS-SVM with Radial Basis Function (RBF) kernel. The obtained nonlinear LS-SVM model is linearized at each sampling instant of system running, after which the on-line linear input-output model of the system is built. Based on the obtained linear input-output model, the Generalized Predictive Control (GPC) algorithm is employed to implement predictive control for the controlled plant in both algorithms. The simulation results after the presented algorithms were implemented in two different industrial processes model; respectively revealed the effectiveness and merit of both algorithms.展开更多
基金funded by The Fundamental Research Funds for Chinese Academy of surveying and mapping(AR2402)Open Fund of Wuhan,Gravitation and Solid Earth Tides,National Observation and Research Station(No.WHYWZ202213)。
文摘A high-precision regional gravity field model is significant in various geodesy applications.In the field of modelling regional gravity fields,the spherical radial basis functions(SRBFs)approach has recently gained widespread attention,while the modelling precision is primarily influenced by the base function network.In this study,we propose a method for constructing a data-adaptive network of SRBFs using a modified Hierarchical Density-Based Spatial Clustering of Applications with Noise(HDBSCAN)algorithm,and the performance of the algorithm is verified by the observed gravity data in the Auvergne area.Furthermore,the turning point method is used to optimize the bandwidth of the basis function spectrum,which satisfies the demand for both high-precision gravity field and quasi-geoid modelling simultaneously.Numerical experimental results indicate that our algorithm has an accuracy of about 1.58 mGal in constructing the gravity field model and about 0.03 m in the regional quasi-geoid model.Compared to the existing methods,the number of SRBFs used for modelling has been reduced by 15.8%,and the time cost to determine the centre positions of SRBFs has been saved by 12.5%.Hence,the modified HDBSCAN algorithm presented here is a suitable design method for constructing the SRBF data adaptive network.
基金Support by China 973 Project (No. 2002CB312200).
文摘A support vector machine (SVM) with quadratic polynomial kernel function based nonlinear model one-step-ahead predictive controller is presented. The SVM based predictive model is established with black-box identification method. By solving a cubic equation in the feature space, an explicit predictive control law is obtained through the predictive control mechanism. The effect of controller is demonstrated on a recognized benchmark problem and on the control of continuous-stirred tank reactor (CSTR). Simulation results show that SVM with quadratic polynomial kernel function based predictive controller can be well applied to nonlinear systems, with good performance in following reference trajectory as well as in disturbance-rejection.
基金supported by the Natural Science Foundation of Shaanxi Province(Grant No.2019JQ206)in part by the Science and Technology Department of Shaanxi Province(Grant No.2020CGXNG-009)in part by the Education Department of Shaanxi Province under Grant 17JK0346.
文摘Landslide probability prediction plays an important role in understanding landslide information in advance and taking preventive measures.Many factors can influence the occurrence of landslides,which is easy to have a curse of dimensionality and thus lead to reduce prediction accuracy.Then the generalization ability of the model will also decline sharply when there are only small samples.To reduce the dimension of calculation and balance the model’s generalization and learning ability,this study proposed a landslide prediction method based on improved principal component analysis(PCA)and mixed kernel function least squares support vector regression(LSSVR)model.First,the traditional PCA was introduced with the idea of linear discrimination,and the dimensions of initial influencing factors were reduced from 8 to 3.The improved PCA can not only weight variables but also extract the original feature.Furthermore,combined with global and local kernel function,the mixed kernel function LSSVR model was framed to improve the generalization ability.Whale optimization algorithm(WOA)was used to optimize the parameters.Moreover,Root Mean Square Error(RMSE),the sum of squared errors(SSE),Mean Absolute Error(MAE),Mean Absolute Precentage Error(MAPE),and reliability were employed to verify the performance of the model.Compared with radial basis function(RBF)LSSVR model,Elman neural network model,and fuzzy decision model,the proposed method has a smaller deviation.Finally,the landslide warning level obtained from the landslide probability can also provide references for relevant decision-making departments in emergency response.
基金Supported by the NSFC(10771144 11071171) Supported by the Beijing Natural Science Foundation(1082005) Supported by the Excellent Doctoral Thesis Prize of Beijing(2008)
文摘We obtain the Bergman kernel for a new type of Hartogs domain.The corresponding LU Qi-Keng's problem is considered.
基金Project(61101185)supported by the National Natural Science Foundation of China
文摘A fast algorithm based on the grayscale distribution of infrared target and the weighted kernel function was proposed for the moving target detection(MTD) in dynamic scene of image series. This algorithm is used to deal with issues like the large computational complexity, the fluctuation of grayscale, and the noise in infrared images. Four characteristic points were selected by analyzing the grayscale distribution in infrared image, of which the series was quickly matched with an affine transformation model. The image was then divided into 32×32 squares and the gray-weighted kernel(GWK) for each square was calculated. At last, the MTD was carried out according to the variation of the four GWKs. The results indicate that the MTD can be achieved in real time using the algorithm with the fluctuations of grayscale and noise can be effectively suppressed. The detection probability is greater than 90% with the false alarm rate lower than 5% when the calculation time is less than 40 ms.
文摘The main objective of this work is to decompose orthogonally the reproducing kernels Hilbert space using any conditionally positive definite kernels into smaller ones by introducing the theory of power kernels, and to show how to do this decomposition recur- sively. It may be used to split large interpolation problems into smaller ones with different kernels which are related to the original kernels. To reach this objective, we will reconstruct the reproducing kernels Hilbert space for the normalized and the extended kernels and give the recursive algorithm of this decomposition.
基金sponsored by the Annual Earthquake Tracking Task,CEA(2017010214)
文摘Based on the existing continuous borehole strain observation,the multiquadric function fitting method was used to deal with time series data. The impact of difference kernel function parameters was discussed to obtain a valuable fitting result,from which the physical connotation of the original data and its possible applications were analyzed.Meanwhile,a brief comparison was made between the results of multiquadric function fitting and polynomial fitting.
基金supported by the National Natural Science Foundation of China (Grant No.10771133)the Shanghai Pujiang Program (Grant No.06PJ14039)
文摘A polynomial interior-point algorithm is presented for monotone linear complementarity problem (MLCP) based on a class of kernel functions with the general barrier term, which are called general kernel functions. Under the mild conditions for the barrier term, the complexity bound of algorithm in terms of such kernel function and its derivatives is obtained. The approach is actually an extension of the existing work which only used the specific kernel functions for the MLCP.
基金supported by Natural Science Foundation of Xinjiang Uygur Autonomous Region(2022D01A213)。
文摘α-diversity describes species diversity at local scales.The Simpson’s and Shannon-Wiener indices are widely used to characterizeα-diversity based on species abundances within a fixed study site(e.g.,a quadrat or plot).Although such indices provide overall diversity estimates that can be analyzed,their values are not spatially continuous nor applicable in theory to any point within the study region,and thus they cannot be treated as spatial covariates for analyses of other variables.Herein,we extended the Simpson’s and Shannon-Wiener indices to create point estimates ofα-diversity for any location based on spatially explicit species occurrences within different bandwidths(i.e.,radii,with the location of interest as the center).For an arbitrary point in the study region,species occurrences within the circle plotting the bandwidth were weighted according to their distance from the center using a tri-cube kernel function,with occurrences closer to the center having greater weight than more distant ones.These novel kernel-basedα-diversity indices were tested using a tree dataset from a 400 m×400 m study region comprising a 200 m×200 m core region surrounded by a 100-m width buffer zone.Our newly extendedα-diversity indices did not disagree qualitatively with the traditional indices,and the former were slightly lower than the latter by<2%at medium and large band widths.The present work demonstrates the feasibility of using kernel-basedα-diversity indices to estimate diversity at any location in the study region and allows them to be used as quantifiable spatial covariates or predictors for other dependent variables of interest in future ecological studies.Spatially continuousα-diversity indices are useful to compare and monitor species trends in space and time,which is valuable for conservation practitioners.
文摘In this paper, we compute the Bergman kernel function on WIII.and RIII(q) denote the Cartan domain of the third class. Because domain WIII is neither homogeneous domain nor Reinhardt domain, we will use a new way to solve this problem. First, we give a holomorphic automorphism group, such that for any Zo, there exists an element of this group, which maps (W, Zo) into (W,O). Second, introduce the concept of semi-Reinhardt and discuss the complete orthonormal system of this domain.
文摘Is this paper we shall give cm asymptotic expansion formula of the kernel functim for the Quasi Faurier-Legendre series on an ellipse, whose error is 0(1/n2) and then applying it we shall sham an analogue of an exact result in trigonometric series.
基金Natural Science Foundation of Shanghai,China(No.19ZR1402300)。
文摘In polyester fiber industrial processes,the prediction of key performance indicators is vital for product quality.The esterification process is an indispensable step in the polyester polymerization process.It has the characteristics of strong coupling,nonlinearity and complex mechanism.To solve these problems,we put forward a multi-output Gaussian process regression(MGPR)model based on the combined kernel function for the polyester esterification process.Since the seasonal and trend decomposition using loess(STL)can extract the periodic and trend characteristics of time series,a combined kernel function based on the STL and the kernel function analysis is constructed for the MGPR.The effectiveness of the proposed model is verified by the actual polyester esterification process data collected from fiber production.
文摘Let {Xn, n≥1} be a strictly stationary sequence of random variables, which are either associated or negatively associated, f(.) be their common density. In this paper, the author shows a central limit theorem for a kernel estimate of f(.) under certain regular conditions.
基金funded by National Nature Science Foundation of China,Yunnan Funda-Mental Research Projects,Special Project of Guangdong Province in Key Fields of Ordinary Colleges and Universities and Chaozhou Science and Technology Plan Project of Funder Grant Numbers 82060329,202201AT070108,2023ZDZX2038 and 202201GY01.
文摘The analysis of microstates in EEG signals is a crucial technique for understanding the spatiotemporal dynamics of brain electrical activity.Traditional methods such as Atomic Agglomerative Hierarchical Clustering(AAHC),K-means clustering,Principal Component Analysis(PCA),and Independent Component Analysis(ICA)are limited by a fixed number of microstate maps and insufficient capability in cross-task feature extraction.Tackling these limitations,this study introduces a Global Map Dissimilarity(GMD)-driven density canopy K-means clustering algorithm.This innovative approach autonomously determines the optimal number of EEG microstate topographies and employs Gaussian kernel density estimation alongside the GMD index for dynamic modeling of EEG data.Utilizing this advanced algorithm,the study analyzes the Motor Imagery(MI)dataset from the GigaScience database,GigaDB.The findings reveal six distinct microstates during actual right-hand movement and five microstates across other task conditions,with microstate C showing superior performance in all task states.During imagined movement,microstate A was significantly enhanced.Comparison with existing algorithms indicates a significant improvement in clustering performance by the refined method,with an average Calinski-Harabasz Index(CHI)of 35517.29 and a Davis-Bouldin Index(DBI)average of 2.57.Furthermore,an information-theoretical analysis of the microstate sequences suggests that imagined movement exhibits higher complexity and disorder than actual movement.By utilizing the extracted microstate sequence parameters as features,the improved algorithm achieved a classification accuracy of 98.41%in EEG signal categorization for motor imagery.A performance of 78.183%accuracy was achieved in a four-class motor imagery task on the BCI-IV-2a dataset.These results demonstrate the potential of the advanced algorithm in microstate analysis,offering a more effective tool for a deeper understanding of the spatiotemporal features of EEG signals.
基金Supported by the State Key Development Program for Basic Research of China (No.2002CB312200) and the National Natural Science Foundation of China (No.60574019).
文摘Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a SVM with spline kernel function. With the help of this model, nonlinear model predictive control can be transformed to linear model predictive control, and consequently a unified analytical solution of optimal input of multi-step-ahead predictive control is possible to derive. This algorithm does not require online iterative optimization in order to be suitable for real-time control with less calculation. The simulation results of pH neutralization process and CSTR reactor show the effectiveness and advantages of the presented algorithm.
基金financial supports of the National Natural Science Fund(Nos.U1765204 and 51409170)。
文摘The simulation of crack propagation processes in rock engineering has been not only a research hot spot among scholars but also a challenge.Based on this background,a new numerical method named improved kernel of smoothed particle hydrodynamics(IKSPH)has been put forward.By improving the kernel function in the traditional smoothed particle hydrodynamics(SPH)method,the brittle fracture characteristics of the base particles are realized.The particle domain searching method(PDSM)has also been put forward to generate the arbitrary complex fissure networks.Three numerical examples are analyzed to validate the efficiency of IKSPH and PDSM,which can correctly reveal the morphology of wing crack and the laws of crack coalescence compared with previous experimental and numerical studies.Finally,a rock slope model with complex joints is numerically simulated and the progressive failure processes are exhibited,which indicates that the IKSPH method can be well applied to rock mechanics engineering.The research results showed that IKSPH method reduces the programming difficulties and avoids the traditional grid distortion,which can provide some references for the application of IKSPH to rock mechanics engineering and the understanding of rock fracture mechanisms.
文摘A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established by black-box identification. And a quadratic objective function with receding horizon was selected to obtain the controller output. By solving a nonlinear optimization problem with equality constraint of model output and boundary constraint of controller output using Nelder-Mead simplex direct search method, a sub-optimal control law was achieved in feature space. The effect of the controller was demonstrated on a recognized benchmark problem and a continuous-stirred tank reactor. The simulation results show that the multi-step-ahead predictive controller can be well applied to nonlinear system, with better performance in following reference trajectory and disturbance-rejection.
基金Under the auspices of Minister of Education(MOE)Project of Key Research Institutes of Humanities and Social Sciences in Universities(No.16JJD790021)National Natural Science Foundation of China(No.41671119)
文摘This study focuses on China's coastal area and its marine economic development. Applying the information diffusion method, the study establishes a kernel density function and its decomposition using a marine economic per capita as the index of the model to depict the dynamic evolution law and the internal influential factors of the Chinese marine economy during 1996–2013. The relative development rate was introduced to analyze the spatial differences in the marine economy's development. In this way, space and time dimensions fully characterized the evolution of the Chinese marine economy. Additionally, the influence of growth and inequality in the process of its development can be analyzed. The study shows that the Chinese marine economy as a whole has been growing, and regional marine economic development is relatively coordinated. In addition, the marine economy began to develop even more rapidly after 2004. There are three factors affecting the dynamic evolution of China's marine economy: first, the most influential mean effect, followed by, second, the variance effect, and third, the least influential residual effect. The biggest influence on the dynamic evolution of the marine economy is the improvement of the development level of the marine economy in the coastal area. Meanwhile, due to the existence of inequality, provinces at higher development levels are more dispersed. Furthermore, the existence of the residual effect weakens the influence of the mean effect, and the influence on the dynamic evolution of the marine economy continuously increases. In the analysis of the influencing factors of the evolution and spatial difference of marine economic development, the level of opening to the outside world, the level of investment in fixed assets and the industrial structure have a positive role in promoting economic development. However, capital investment in scientific human research has a negative correlation with economic development, and does not pass the significant test. The difference in regional development levels and development speed is also very apparent; namely, the provinces with higher development levels generally displayed faster development speeds while those with lower development levels showed slower development speeds across the four periods analyzed.
基金This work has been supported by the National Outstanding Youth Science Foundation of China (No. 60025308) and the Teach and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE,China.
文摘A prediction control algorithm is presented based on least squares support vector machines (LS-SVM) model for a class of complex systems with strong nonlinearity. The nonlinear off-line model of the controlled plant is built by LS-SVM with radial basis function (RBF) kernel. In the process of system running, the off-line model is linearized at each sampling instant, and the generalized prediction control (GPC) algorithm is employed to implement the prediction control for the controlled plant. The obtained algorithm is applied to a boiler temperature control system with complicated nonlinearity and large time delay. The results of the experiment verify the effectiveness and merit of the algorithm.
基金Project supported by the National Outstanding Youth ScienceFoundation of China (No. 60025308) and the Teach and ResearchAward Program for Outstanding Young Teachers in Higher EducationInstitutions of MOE, China
文摘Used for industrial process with different degree of nonlinearity, the two predictive control algorithms presented in this paper are based on Least Squares Support Vector Machines (LS-SVM) model. For the weakly nonlinear system, the system model is built by using LS-SVM with linear kernel function, and then the obtained linear LS-SVM model is transformed into linear input-output relation of the controlled system. However, for the strongly nonlinear system, the off-line model of the controlled system is built by using LS-SVM with Radial Basis Function (RBF) kernel. The obtained nonlinear LS-SVM model is linearized at each sampling instant of system running, after which the on-line linear input-output model of the system is built. Based on the obtained linear input-output model, the Generalized Predictive Control (GPC) algorithm is employed to implement predictive control for the controlled plant in both algorithms. The simulation results after the presented algorithms were implemented in two different industrial processes model; respectively revealed the effectiveness and merit of both algorithms.