Kerogen types exert a decisive effect on the onset and capacity of hydrocarbon generation of source rocks.Lacustrine source rocks in the Liaohe Western Depression are characterized by thick deposition,high total organ...Kerogen types exert a decisive effect on the onset and capacity of hydrocarbon generation of source rocks.Lacustrine source rocks in the Liaohe Western Depression are characterized by thick deposition,high total organic carbon(TOC)content,various kerogen types,and a wide range of thermal maturity.Consequently,their hydrocarbon generation potential and resource estimation can be misinterpreted.In this study,geochemical tests,numerical analysis,hydrocarbon generation kinetics,and basin modeling were integrated to investigate the differential effects of kerogen types on the hydrocarbon generation potential of lacustrine source rocks.Optimized hydrocarbon generation and expulsion(HGE)models of different kerogen types were established quantitatively upon abundant Rock-Eval/TOC/vitrinite reflectance(R_(o))datasets.Three sets of good-excellent source rocks deposited in the fourth(Es4),third(Es3),and first(Es1)members of Paleogene Shahejie Formation,are predominantly types I-II_(1),II_(1)-II_(2),and II-III,respectively.The activation energy of types I-II_(2)kerogen is concentrated(180-230 kcal/mol),whereas that of type III kerogen is widely distributed(150-280 kcal/mol).The original hydrocarbon generation potentials of types I,II_(1),II_(2),and III kerogens are 790,510,270,and 85 mg/g TOC,respectively.The Ro values of the hydrocarbon generation threshold for type I-III source rocks gradually increase from 0.42%to 0.74%,and Ro values of the hydrocarbon expulsion threshold increase from 0.49%to 0.87%.Types I and II_(1)source rocks are characterized by earlier hydrocarbon generation,more rapid hydrocarbon expulsion,and narrower hydrocarbon generation windows than types II_(2)and III source rocks.The kerogen types also affect the HGE history and resource potential.Three types(conventional,tight,and shale oil/gas)and three levels(realistic,expected,and prospective)of hydrocarbon resources of different members in the Liaohe Western Depression are evaluated.Findings suggest that the Es3 member has considerable conventional and unconventional hydrocarbon resources.This study can quantitatively characterize the hydrocarbon generation potential of source rocks with different kerogen types,and facilitate a quick and accurate assessment of hydrocarbon resources,providing strategies for future oil and gas exploration.展开更多
An integrated benthic foraminiferal and organic matter analysis of samples obtained from sedimentary sections exposed in the Mangoule-Bonepoupa area, revealed a very shallow marine paleo-depositional environment for t...An integrated benthic foraminiferal and organic matter analysis of samples obtained from sedimentary sections exposed in the Mangoule-Bonepoupa area, revealed a very shallow marine paleo-depositional environment for the sediments studied, with considerable influx of continental organic matter that were accumulated during the Cenomanian-Turonian age. With reference to the lithostratigraphic profile of the Douala/Kribi-Campo Basin, the age obtained reveals that the sedimentary sections studied belong particularly to the lower section of the Logbadjeck/Mungo River Formation, based on the following benthic foraminifera assemblage: Ammobaculites jessensis, Ammobaculites benuensis, Ammobaculites coprolithiformis, Ammotium cf nkalagum, Ammotium nwalum, Haplophragmoides cf beuchensis, Trochamina taylorana. A particularly very poor palynomorph assemblage was recovered and included no age diagnostic species: Acrostichum aureum, Lycopodiumsporites sp., Fungal spore, Lavigatosporites discordatus, Longapertites sp., Verrucosisporites sp. An organic petrographic analysis performed on these samples revealed Kerogen Type-II and Type-III. The entire data sets obtained from this area is remarkably poor and we suspect poor preservation as the cause viewing the extent of weathering. The paleo-depositional environment of these sediments was suggested both from the foraminifera and palynomorphs present and confirmed from the organic matter types and macrofossil contents. The studied sections are composed generally of dark to dark-gray shale beds. As one of the petroleum producing basins within the Gulf of Guinea in which exploration/exploitation activities are on-going, the current research is aim at providing more data useful in the continuous search for more potential source rocks in this basin.展开更多
The Democratic Republic of the Congo holds important reserves of oil shale which is still under geological status.Herein,the characterization and pyrolysis kinetics of typeⅠkerogen-rich oil shale of the western Centr...The Democratic Republic of the Congo holds important reserves of oil shale which is still under geological status.Herein,the characterization and pyrolysis kinetics of typeⅠkerogen-rich oil shale of the western Central Kongo(CK)were investigated.X-ray diffraction,Fourier-transform infrared spectroscopy and thermal analysis(TG/DTA)showed that CK oil shale exhibits a siliceous mineral matrix with a consistent organic matter rich in aliphatic chains.The pyrolysis behavior of kerogen revealed the presence of a single mass loss between 300 and 550°C,estimated at 12.5%and attributed to the oil production stage.Non-isothermal kinetics was performed by determining the activation energy using the iterative isoconversional model-free methods and exhibits a constant value with E=211.5±4.7 kJ mol.1.The most probable kinetic model describing the kerogen pyrolysis mechanism was obtained using the Coats–Redfern and Arrhenius plot methods.The results showed a unique kinetic triplet confirming the nature of kerogen,predominantly typeⅠand reinforcing the previously reported geochemical characteristics of the CK oil shale.Besides,the calculation of thermodynamic parameters(ΔH~*,ΔS~*andΔG~*)corresponding to the pyrolysis of typeⅠkerogen revealed that the process is non-spontaneous,in agreement with DTA experiments.展开更多
基金This research is supported by the Joint Fund of the National Natural Science Foundation of China(grant number U19B6003-02)the Cooperation Program of PetroChina Liaohe Oilfield Company(grant Number HX20180604)the AAPG Foundation Grants-in-Aid Program(grant number 22269437).This study has benefited considerably from PetroChina Liaohe Oilfield Company for data support.We also thank the editor and the anonymous reviewers for their professional suggestions and comments.
文摘Kerogen types exert a decisive effect on the onset and capacity of hydrocarbon generation of source rocks.Lacustrine source rocks in the Liaohe Western Depression are characterized by thick deposition,high total organic carbon(TOC)content,various kerogen types,and a wide range of thermal maturity.Consequently,their hydrocarbon generation potential and resource estimation can be misinterpreted.In this study,geochemical tests,numerical analysis,hydrocarbon generation kinetics,and basin modeling were integrated to investigate the differential effects of kerogen types on the hydrocarbon generation potential of lacustrine source rocks.Optimized hydrocarbon generation and expulsion(HGE)models of different kerogen types were established quantitatively upon abundant Rock-Eval/TOC/vitrinite reflectance(R_(o))datasets.Three sets of good-excellent source rocks deposited in the fourth(Es4),third(Es3),and first(Es1)members of Paleogene Shahejie Formation,are predominantly types I-II_(1),II_(1)-II_(2),and II-III,respectively.The activation energy of types I-II_(2)kerogen is concentrated(180-230 kcal/mol),whereas that of type III kerogen is widely distributed(150-280 kcal/mol).The original hydrocarbon generation potentials of types I,II_(1),II_(2),and III kerogens are 790,510,270,and 85 mg/g TOC,respectively.The Ro values of the hydrocarbon generation threshold for type I-III source rocks gradually increase from 0.42%to 0.74%,and Ro values of the hydrocarbon expulsion threshold increase from 0.49%to 0.87%.Types I and II_(1)source rocks are characterized by earlier hydrocarbon generation,more rapid hydrocarbon expulsion,and narrower hydrocarbon generation windows than types II_(2)and III source rocks.The kerogen types also affect the HGE history and resource potential.Three types(conventional,tight,and shale oil/gas)and three levels(realistic,expected,and prospective)of hydrocarbon resources of different members in the Liaohe Western Depression are evaluated.Findings suggest that the Es3 member has considerable conventional and unconventional hydrocarbon resources.This study can quantitatively characterize the hydrocarbon generation potential of source rocks with different kerogen types,and facilitate a quick and accurate assessment of hydrocarbon resources,providing strategies for future oil and gas exploration.
文摘An integrated benthic foraminiferal and organic matter analysis of samples obtained from sedimentary sections exposed in the Mangoule-Bonepoupa area, revealed a very shallow marine paleo-depositional environment for the sediments studied, with considerable influx of continental organic matter that were accumulated during the Cenomanian-Turonian age. With reference to the lithostratigraphic profile of the Douala/Kribi-Campo Basin, the age obtained reveals that the sedimentary sections studied belong particularly to the lower section of the Logbadjeck/Mungo River Formation, based on the following benthic foraminifera assemblage: Ammobaculites jessensis, Ammobaculites benuensis, Ammobaculites coprolithiformis, Ammotium cf nkalagum, Ammotium nwalum, Haplophragmoides cf beuchensis, Trochamina taylorana. A particularly very poor palynomorph assemblage was recovered and included no age diagnostic species: Acrostichum aureum, Lycopodiumsporites sp., Fungal spore, Lavigatosporites discordatus, Longapertites sp., Verrucosisporites sp. An organic petrographic analysis performed on these samples revealed Kerogen Type-II and Type-III. The entire data sets obtained from this area is remarkably poor and we suspect poor preservation as the cause viewing the extent of weathering. The paleo-depositional environment of these sediments was suggested both from the foraminifera and palynomorphs present and confirmed from the organic matter types and macrofossil contents. The studied sections are composed generally of dark to dark-gray shale beds. As one of the petroleum producing basins within the Gulf of Guinea in which exploration/exploitation activities are on-going, the current research is aim at providing more data useful in the continuous search for more potential source rocks in this basin.
基金financially supported by University of Mohammed V-Morocco under the Project No.SCH 04/09 and HassanⅡAcademy of Science and Technology,Morocco.
文摘The Democratic Republic of the Congo holds important reserves of oil shale which is still under geological status.Herein,the characterization and pyrolysis kinetics of typeⅠkerogen-rich oil shale of the western Central Kongo(CK)were investigated.X-ray diffraction,Fourier-transform infrared spectroscopy and thermal analysis(TG/DTA)showed that CK oil shale exhibits a siliceous mineral matrix with a consistent organic matter rich in aliphatic chains.The pyrolysis behavior of kerogen revealed the presence of a single mass loss between 300 and 550°C,estimated at 12.5%and attributed to the oil production stage.Non-isothermal kinetics was performed by determining the activation energy using the iterative isoconversional model-free methods and exhibits a constant value with E=211.5±4.7 kJ mol.1.The most probable kinetic model describing the kerogen pyrolysis mechanism was obtained using the Coats–Redfern and Arrhenius plot methods.The results showed a unique kinetic triplet confirming the nature of kerogen,predominantly typeⅠand reinforcing the previously reported geochemical characteristics of the CK oil shale.Besides,the calculation of thermodynamic parameters(ΔH~*,ΔS~*andΔG~*)corresponding to the pyrolysis of typeⅠkerogen revealed that the process is non-spontaneous,in agreement with DTA experiments.