By introducing a new tortoise coordinate transformation, we investigate the quantum thermal and non-thermal radiations of a non-stationary Kerr-Newman-de Sitter black hole. The accurate location and radiate temperatur...By introducing a new tortoise coordinate transformation, we investigate the quantum thermal and non-thermal radiations of a non-stationary Kerr-Newman-de Sitter black hole. The accurate location and radiate temperature of the event horizon as well as the maximum energy of the non-thermal radiation are derived. It is shown that the radiate temperature and the maximum energy are related to not only the evaporation rate, but also the shape of the event horizon, moreover the maximum energy depends on the electromagnetic potential. Finally, we use the results to reduce the non-stationary Kerr-Newman black hole, the non-stationary Kerr black hole, the stationary Kerr-Newman-de Sitter black hole, and the static Schwarzshild black hole.展开更多
Hawking radiation of the stationary Kerr–de Sitter black hole is investigated using the relativistic Hamilton–Jacobi method. Meanwhile, extending this work to a non-stationary black hole using Dirac equations and ge...Hawking radiation of the stationary Kerr–de Sitter black hole is investigated using the relativistic Hamilton–Jacobi method. Meanwhile, extending this work to a non-stationary black hole using Dirac equations and generalized tortoise coordinate transformation, we derived the locations, the temperature of the thermal radiation as well as the maximum energy of the non-thermal radiation. It is found that the surface gravity and the Hawking temperature depend on both time and different angles. An extra coupling effect is obtained in the thermal radiation spectrum of Dirac particles which is absent from thermal radiation of scalar particles. Further, the chemical potential derived from the thermal radiation spectrum of scalar particle has been found to be equal to the highest energy of the negative energy state of the scalar particle in the non-thermal radiation for the Kerr–de Sitter black hole. It is also shown that for stationary black hole space time, these two different methods give the same Hawking radiation temperature.展开更多
In this paper, Hawking radiation from the Kerr Newman de Sitter black hole is studied via gauge anomaly and gravitational anomaly. The obtained results of Hawking radiation from the event horizon and the cosmological ...In this paper, Hawking radiation from the Kerr Newman de Sitter black hole is studied via gauge anomaly and gravitational anomaly. The obtained results of Hawking radiation from the event horizon and the cosmological horizon accord with those by other methods.展开更多
In this paper we obtain the geodesic equations of motion of a test particle (charged particle and photon) in the Kerr-Newman de/anti de Sitter black hole by using the Hamilton-Jacobi equation. We determine the positio...In this paper we obtain the geodesic equations of motion of a test particle (charged particle and photon) in the Kerr-Newman de/anti de Sitter black hole by using the Hamilton-Jacobi equation. We determine the positions of the inner, outer and cosmological horizons of the black hole. In terms of the effective potentials, the trajectory of the test particle within the inner horizon is studied. It appears that there are stable circular orbits of a charged particle and photon within the inner horizon and that the combined effect of the charge and rotation of the Kerr-Newman de/anti de Sitter black hole and the coupling between the charge of the test particle and the electromagnetic field of the black hole may account for this.展开更多
At the event horizon and the cosmological horizon of the stationary axisymmetric Kerr-Newman black hole in the de Sitter space-time background, the tunneling rate of the charged particles is relevant with Bekenstein-H...At the event horizon and the cosmological horizon of the stationary axisymmetric Kerr-Newman black hole in the de Sitter space-time background, the tunneling rate of the charged particles is relevant with Bekenstein-Hawking entropy and the real radiation spectrum is not strictly pure thermal, but consistent with the underlying unitary theory in quantum mechanics. This is a feasible interpretation for the paradox of the black hole information loss. Taking the self-gravitation action, energy conservation, angular momentum conservation and charge conservation into account, the derived radiation spectrum is a correct amendment to the Hawking pure thermal spectrum.展开更多
Based on the theory of Klein-Gordon scalar field particles, the Hawking radiation of a higher- dimensional Kerr-anti-de Sitter black hole with one rotational parameter is investigated using the beyond semi-classical a...Based on the theory of Klein-Gordon scalar field particles, the Hawking radiation of a higher- dimensional Kerr-anti-de Sitter black hole with one rotational parameter is investigated using the beyond semi-classical approximation method. The corrections of quantum tunnelling probability, Hawking temperature and Bekenstein-Hawking entropy are also included.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 10347008).
文摘By introducing a new tortoise coordinate transformation, we investigate the quantum thermal and non-thermal radiations of a non-stationary Kerr-Newman-de Sitter black hole. The accurate location and radiate temperature of the event horizon as well as the maximum energy of the non-thermal radiation are derived. It is shown that the radiate temperature and the maximum energy are related to not only the evaporation rate, but also the shape of the event horizon, moreover the maximum energy depends on the electromagnetic potential. Finally, we use the results to reduce the non-stationary Kerr-Newman black hole, the non-stationary Kerr black hole, the stationary Kerr-Newman-de Sitter black hole, and the static Schwarzshild black hole.
文摘Hawking radiation of the stationary Kerr–de Sitter black hole is investigated using the relativistic Hamilton–Jacobi method. Meanwhile, extending this work to a non-stationary black hole using Dirac equations and generalized tortoise coordinate transformation, we derived the locations, the temperature of the thermal radiation as well as the maximum energy of the non-thermal radiation. It is found that the surface gravity and the Hawking temperature depend on both time and different angles. An extra coupling effect is obtained in the thermal radiation spectrum of Dirac particles which is absent from thermal radiation of scalar particles. Further, the chemical potential derived from the thermal radiation spectrum of scalar particle has been found to be equal to the highest energy of the negative energy state of the scalar particle in the non-thermal radiation for the Kerr–de Sitter black hole. It is also shown that for stationary black hole space time, these two different methods give the same Hawking radiation temperature.
基金supported by the National Natural Science Foundation of China (Grant No 10773008)
文摘In this paper, Hawking radiation from the Kerr Newman de Sitter black hole is studied via gauge anomaly and gravitational anomaly. The obtained results of Hawking radiation from the event horizon and the cosmological horizon accord with those by other methods.
文摘In this paper we obtain the geodesic equations of motion of a test particle (charged particle and photon) in the Kerr-Newman de/anti de Sitter black hole by using the Hamilton-Jacobi equation. We determine the positions of the inner, outer and cosmological horizons of the black hole. In terms of the effective potentials, the trajectory of the test particle within the inner horizon is studied. It appears that there are stable circular orbits of a charged particle and photon within the inner horizon and that the combined effect of the charge and rotation of the Kerr-Newman de/anti de Sitter black hole and the coupling between the charge of the test particle and the electromagnetic field of the black hole may account for this.
基金the Foundation for Fundamental Research Projects of Sichuan Province(Grant No. 05JY029-092)
文摘At the event horizon and the cosmological horizon of the stationary axisymmetric Kerr-Newman black hole in the de Sitter space-time background, the tunneling rate of the charged particles is relevant with Bekenstein-Hawking entropy and the real radiation spectrum is not strictly pure thermal, but consistent with the underlying unitary theory in quantum mechanics. This is a feasible interpretation for the paradox of the black hole information loss. Taking the self-gravitation action, energy conservation, angular momentum conservation and charge conservation into account, the derived radiation spectrum is a correct amendment to the Hawking pure thermal spectrum.
基金Supported by National Natural Science Foundation of China (10778719)Natural Science Foundation of Hainan Province(109004)
文摘Based on the theory of Klein-Gordon scalar field particles, the Hawking radiation of a higher- dimensional Kerr-anti-de Sitter black hole with one rotational parameter is investigated using the beyond semi-classical approximation method. The corrections of quantum tunnelling probability, Hawking temperature and Bekenstein-Hawking entropy are also included.