Related substances in pharmaceutical formulations are associated with their safety, efficacy and stability. However, there is no overall study already published on the assessment of related substances in the Compound ...Related substances in pharmaceutical formulations are associated with their safety, efficacy and stability. However, there is no overall study already published on the assessment of related substances in the Compound Ketoconazole and Clobetasol Propionate Cream. In this work, a reliable HPLC-TOF-MS qualitative method was developed for the analysis of related substances in this preparation with a quick and easy extraction procedure. Besides the active pharmaceutical ingredients, two compounds named ketoconazole impurity B′ optical isomer and ketoconazole impurity E were identified. Furthermore, a new HPLC method for qualitative and quantitative assessment on related substances and degradation products, which were found in the stability test, was established and validated. The single standard to determine multi-components method was applied in the quantitative analysis, which was an effective way for reducing cost and improving accuracy. This study can provide a creative idea for routine analysis of quality control of the Compound Ketoconazole and Clobetasol Propionate Cream.展开更多
To provide new insights into the development and utilization of Douchi artificial starters,three common strains(Aspergillus oryzae,Mucor racemosus,and Rhizopus oligosporus)were used to study their influence on the fer...To provide new insights into the development and utilization of Douchi artificial starters,three common strains(Aspergillus oryzae,Mucor racemosus,and Rhizopus oligosporus)were used to study their influence on the fermentation of Douchi.The results showed that the biogenic amine contents of the three types of Douchi were all within the safe range and far lower than those of traditional fermented Douchi.Aspergillus-type Douchi produced more free amino acids than the other two types of Douchi,and its umami taste was more prominent in sensory evaluation(P<0.01),while Mucor-type and Rhizopus-type Douchi produced more esters and pyrazines,making the aroma,sauce,and Douchi flavor more abundant.According to the Pearson and PLS analyses results,sweetness was significantly negatively correlated with phenylalanine,cysteine,and acetic acid(P<0.05),bitterness was significantly negatively correlated with malic acid(P<0.05),the sour taste was significantly positively correlated with citric acid and most free amino acids(P<0.05),while astringency was significantly negatively correlated with glucose(P<0.001).Thirteen volatile compounds such as furfuryl alcohol,phenethyl alcohol,and benzaldehyde caused the flavor difference of three types of Douchi.This study provides theoretical basis for the selection of starting strains for commercial Douchi production.展开更多
The significant demand for high quality food has motivated us to adopt appropriate processing methods to improve the food nutritional quality and flavors.In this study,the effects of five drying methods,namely,pulsed ...The significant demand for high quality food has motivated us to adopt appropriate processing methods to improve the food nutritional quality and flavors.In this study,the effects of five drying methods,namely,pulsed vacuum drying(PVD),freeze drying(FD),infrared drying(IRD),hot-air drying(HAD)and sun drying(SD)on free amino acids(FAAs),α-dicarbonyl compounds(α-DCs)and volatile compounds(VOCs)in rape bee pollen(RBP)were determined.The results showed that FD significantly released the essential amino acids(EAAs)compared with fresh samples while SD caused the highest loss.Glucosone was the dominantα-DCs in RBP and the highest loss was observed after PVD.Aldehydes were the dominant volatiles of RBP and SD samples contained more new volatile substances(especially aldehydes)than the other four drying methods.Comprehensively,FD and PVD would be potential methods to effectively reduce the quality deterioration of RBP in the drying process.展开更多
For the first time, for different organic and inorganic compounds possessing the plastic crystalline phase, a new semiempirical equation describing dependence of their fusion enthalpies on such physico-chemical quanti...For the first time, for different organic and inorganic compounds possessing the plastic crystalline phase, a new semiempirical equation describing dependence of their fusion enthalpies on such physico-chemical quantities as normal melting temperature, surface tension, molar volume and critical molar volume is received on the base of the principle of corresponding states and the energy equipartition theorem. Moreover, the proposed equation allows one to take into account the particularities of one-particle molecular rotation in the plastic crystalline phase.展开更多
The petroleum industry is a significant source of anthropogenic volatile organic compounds(VOCs),but up to now,its exact impact on urban VOCs and ozone(O_(3))remains unclear.This study conducted year-long VOC ob-serva...The petroleum industry is a significant source of anthropogenic volatile organic compounds(VOCs),but up to now,its exact impact on urban VOCs and ozone(O_(3))remains unclear.This study conducted year-long VOC ob-servations in Dongying,China,a petroleum industrial region.The VOCs from the petroleum industry(oil and gas volatilization and petrochemical production)were identified by employing the positive matrix factorization model,and their contribution to O_(3) formation was quantitatively evaluated using an observation-based chemical box model.The observed annual average concentration of VOCs was 68.6±63.5 ppbv,with a maximum daily av-erage of 335.3 ppbv.The petroleum industry accounted for 66.5%of total VOCs,contributing 54.9%from oil and gas evaporation and 11.6%from petrochemical production.Model results indicated that VOCs from the petroleum industry contributed to 31%of net O_(3) production,with 21.3%and 34.2%contributions to HO_(2)+NO and RO_(2)+NO pathways,respectively.The larger impact on the RO_(2) pathway is primarily due to the fact that OH+VOCs ac-count for 86.9%of the primary source of RO_(2).This study highlights the critical role of controlling VOCs from the petroleum industry in urban O_(3) pollution,especially those from previously overlooked low-reactivity alkanes.展开更多
In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl gro...In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl groups, including 2-(2-methoxyphenoxy)-1-phenylethanone, 2-(2-methoxyphenoxy)-1-phenylethanol, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanol, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanol have been selected and their electrochemical properties have been studied experimentally by cyclic voltammetry, and FT-IR spectroelectrochemistry. Combining with electrolysis products distribution analysis and density functional theory calculations, oxidation mechanisms of all six model dimers have been explored. In particular, a total effect from substituents of both para-methoxy(on the aryl ring closing to Cα) and Cα-OH on the oxidation mechanisms has been clearly observed, showing a significant selectivity on the Cα-Cβbond cleavage induced by electrochemical oxidations.展开更多
Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific micr...Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific microorganisms,enabling the early diagnosis of infections and the timely implementation of tar-geted therapy.However,complex matrices only contain trace levels of VOCs,and their constituent com-ponents can hinder determination of these compounds.Therefore,modern analytical techniques enabling the non-invasive identification and precise quantification of microbial VOCs are needed.In this paper,we discuss bacterial VOC analysis under in vitro conditions,in animal models and disease diagnosis in humans,including techniques for offline and online analysis in clinical settings.We also consider the advantages and limitations of novel microextraction techniques used to prepare biological samples for VOC analysis,in addition to reviewing current clinical studies on bacterial volatilomes that address inter-species in-teractions,the kinetics of VOC metabolism,and species-and drug-resistance specificity.展开更多
The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,an...The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,and breakdown value to prepare LAB compound starter cultures.The results revealed that Latilactobacillus sakei HSD004 and Lacticaseibacillus rhamnosus HSD005 had apparent advantages in increasing the viscosity and reducing the setback and breakdown values of glutinous rice flour.In particular,the compound starter created using the two abovementioned LAB in the ratio of 3:1 had better performance than that using a single LAB in improving the pasting properties and increasing the water and oil absorption capacity of glutinous rice flour.Moreover,the gelatinization enthalpy of the fermented samples increased significantly.For frozen glutinous rice dough stored for 28 days,the viscoelasticity of frozen dough prepared by compound starter was better than that of control dough,and the freezable water content was lower than that of control dough.These results indicate that compound LAB fermentation is a promising technology in the glutinous rice-based food processing industry,which has significance for its application.展开更多
Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous...Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous explosive reactions when subjected to external stimuli such as electrical discharge.Therefore,developing a reliable model for predicting their electrostatic discharge sensitivity(ESD)becomes imperative.This study proposes a novel and straightforward model based on the presence of specific groups(-NH_(2) or-NH-,-N=N^(+)-O^(-)and-NNO_(2),-ONO_(2) or-NO_(2))under certain conditions to assess the ESD of NRHECs and their salts,employing interpretable structural parameters.Utilizing a comprehensive dataset comprising 54 ESD measurements of NRHECs and their salts,divided into 49/5 training/test sets,the model achieves promising results.The Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Maximum Error for the training set are reported as 0.16 J,0.12 J,and 0.5 J,respectively.Notably,the ratios RMSE(training)/RMSE(test),MAE(training)/MAE(test),and Max Error(training)/Max Error(test)are all greater than 1.0,indicating the robust predictive capabilities of the model.The presented model demonstrates its efficacy in providing a reliable assessment of ESD for the targeted NRHECs and their salts,without the need for intricate computer codes or expert involvement.展开更多
Proton exchange membrane fuel cells(PEMFCs)are promising next-generation energy conversion devices with advantages including high energy conversion efficiency,low noise,and environmental friendliness.On the PEMFC cath...Proton exchange membrane fuel cells(PEMFCs)are promising next-generation energy conversion devices with advantages including high energy conversion efficiency,low noise,and environmental friendliness.On the PEMFC cathode,the oxygen reduction reaction(ORR)relies heavily on Pt-based catalysts,where PtM_(x)(M stands for transition metal)intermetallic compounds(IMCs)are considered the best choice to enhance the catalytic activity.However,problems such as inadequate catalytic activity,high cost,and insufficient durability,etc.still hamper its commercialization.The optimizations of the catalyst structure,the improvements in the preparation process,and the understanding of the reaction mechanism are of great value.The developments of cathodic oxygen reduction catalysts for PEMFCs will also focus on improving the catalytic activity of intermetallic compound nanoparticles,the utilization rate,and the durability of Pt.Controlling the particle size and particle/carrier interaction remain key issues for future research.The catalyst reaction mechanism,the surface changes of the nanoparticles of Pt(111)face before and after the catalytic reaction,and the targeted regulation of the adsorption strength between the IMCs and oxygen-containing intermediates adjusted by transition metals need to be investigated more specifically and directly.At the application level,the expression of catalyst properties in the catalyst membrane electrode and reactor are the keys to the performance of PEMFCs.Therefore,researches on PEMFCs are still systematic works.This paper summarized the recent process toward the optimization of catalyst preparation,the exploration of new catalysts,and the new understanding of the mechanism.Given the reference to the development of PEMFCs,future research can start from the existing problems,solve the shortcomings of the catalyst,and promote the practical application of PEMFCs.展开更多
Diabetic nephropathy(DN),a severe complication of diabetes,is widely recognized as a primary contributor to end-stage renal disease.Recent studies indicate that the inflammation triggered by Tolllike receptor 4(TLR4)i...Diabetic nephropathy(DN),a severe complication of diabetes,is widely recognized as a primary contributor to end-stage renal disease.Recent studies indicate that the inflammation triggered by Tolllike receptor 4(TLR4)is of paramount importance in the onset and progression of DN.TLR4 can bind to various ligands,including exogenous ligands such as proteins and polysaccharides from bacteria or viruses,as well as endogenous ligands such as biglycan,fibrinogen,and hyaluronan.In DN,the expression or release of TLR4-related ligands is significantly elevated,resulting in excessive TLR4 activation and increased production of proinflammatory cytokines through downstream signaling pathways.This process is closely associated with the progression of DN.Natural compounds are biologically active products derived from natural sources that have advantages in the treatment of certain diseases.Various types of natural compounds,including alkaloids,flavonoids,polyphenols,terpenoids,glycosides,and polysaccharides,have demonstrated their ability to improve DN by affecting the TLR4 signaling pathway.In this review,we summarize the mechanism of action of TLR4 in DN and the natural compounds that can ameliorate DN by modulating the TLR4 signaling pathway.We specifically highlight the potential of compounds such as curcumin,paclitaxel,berberine,and ursolic acid to inhibit the TLR4 signaling pathway,which provides an important direction of research for the treatment of DN.展开更多
Portulaca oleracea L.,commonly known as purslane,is a worldwide weed species belonging to the family Portulacaceae and has been known as“Global Panacea”.As one of the most widely consumed green vegetables and medici...Portulaca oleracea L.,commonly known as purslane,is a worldwide weed species belonging to the family Portulacaceae and has been known as“Global Panacea”.As one of the most widely consumed green vegetables and medicinal plants around the world,it has recently been re-evaluated as a potential“new crop”due to the properties that differentiate it as one of the best vegetable sources of omega-3 fatty acid(α-linolenic acid),as well as a variety of nutrients and phytochemicals.Accordingly,emerging research has found that purslane exhibits health-promoting properties like anti-inflammatory,anti-hyperglycemic,antioxidant,neuroprotective,and immunomodulatory.These findings suggest that this species possesses a potential using as a dietary supplement beyond potherb and traditional medicine.This review systematically summarizes the up-to-date research carried out on purslane,including the nutritional compositions,bioactive compounds,and health benefits it exerts as well as limitations,challenges,and future directions of research.Finally,we hope that this review would provide purslane with a comprehensive reference and future scope as functional and health-promoting food for disease prevention and treatment.展开更多
Bidens pilosa is a member of the Asteraceae family that is widely distributed across the tropics. It has been utilized by different communities both as food and medicinal herb. This plant and its polyacetylenic compou...Bidens pilosa is a member of the Asteraceae family that is widely distributed across the tropics. It has been utilized by different communities both as food and medicinal herb. This plant and its polyacetylenic compounds hold potential as a natural antidiabetic intervention that can be used to combat this global public health problem. Bioactive compounds found in this plant constitute promising interventions for combating obesity which is a major risk factor for the development of type 2 diabetes. These phytocompounds can work independently or synergistically to modulate appetite, lipase activity, adipogenesis and adipocyte apoptosis. However, the efficacy, mode of action and scope of management of diabetes by these compounds remains elusive. The current review aims to summarize data on efficacy in the management of diabetes, an antidiabetic candidate polyacetylenic compound and possible biological activities as an antidiabetic agent from the available literature. Much emphasis has been directed to cytopiloyne as a representative of polyacetylenic compounds extracted from Bidens pilosa and its activity on diabetic animal models. The majority of the studies conducted on animal models described antidiabetic mechanisms that range from hypoglycemic to secretagogue activity of cytopiloyne in a dose-dependent manner. A clinical trial pilot indicated improved glycemic control of Bidens pilosa formulation among diabetic patients in the study. Bidens pilosa and its compounds are highly potent antidiabetic agent(s) that should be graduated to an intervention for management of diabetes through pre-clinical and clinical trials to elucidate its efficacy and safety.展开更多
Hericium erinaceus is a nutritious edible and medicinal fungi,rich in a variety of functional active ingredients,with various physiological functions such as antioxidation,anticancer,and enhancing immunity.It is also ...Hericium erinaceus is a nutritious edible and medicinal fungi,rich in a variety of functional active ingredients,with various physiological functions such as antioxidation,anticancer,and enhancing immunity.It is also effective in protecting the digestive system and preventing neurodegenerative diseases.In this review paper,we summarize the sources,structures and efficacies of the main active components in H.erinaceus fruiting body,mycelium,and culture media,and update the latest research progress on their biological activities and the related molecular mechanisms.Based on this information,we provide detailed challenges in current research,industrialization and information on the active ingredients of H.erinaceus.Perspectives for future studies and new applications of H.erinaceus are proposed.展开更多
Arsenic compounds are widely used for the therapeutic intervention of multiple diseases.Ancient pharmacologists discovered the medicinal utility of these highly toxic substances,and modern pharmacologists have further...Arsenic compounds are widely used for the therapeutic intervention of multiple diseases.Ancient pharmacologists discovered the medicinal utility of these highly toxic substances,and modern pharmacologists have further recognized the specific active ingredients in human diseases.In particular,Arsenic trioxide(ATO),as a main component,has therapeutic effects on various tumors(including leukemia,hepatocellular carcinoma,lung cancer,etc.).However,its toxicity limits its efficacy,and controlling the toxicity has been an important issue.Interestingly,recent evidence has pointed out the pivotal roles of arsenic compounds in phase separation and membraneless organelles formation,which may determine their toxicity and therapeutic efficacy.Here,we summarize the arsenic compoundsregulating phase separation and membraneless organelles formation.We further hypothesize their potential involvement in the therapy and toxicity of arsenic compounds,highlighting potential mechanisms underlying the clinical application of arsenic compounds.展开更多
Understanding the adsorption interactions between carbon materials and sulfur compounds has far-reaching impacts,in addition to their well-known important role in energy storage and conversion,such as lithium-ion batt...Understanding the adsorption interactions between carbon materials and sulfur compounds has far-reaching impacts,in addition to their well-known important role in energy storage and conversion,such as lithium-ion batteries.In this paper,properties of intrinsic B or Si single-atom doped,and B-Si codoped graphene(GR)and graphdiyne(GDY)were investigated by using density functional theory-based calculations,in which the optimal doping configurations were explored for potential applications in adsorbing sulfur compounds.Results showed that both B or Si single-atom doping and B-Si codoping could substantially enhance the electron transport properties of GR and GDY,improving their surface activity.Notably,B and Si atoms displayed synergistic effects for the codoped configurations,where B-Si codoped GR/GDY exhibited much better performance in the adsorption of sulfurcontaining chemicals than single-atom doped systems.In addition,results demonstrated that,after B-Si codoping,the adsorption energy and charge transfer amounts of GDY with sulfur compounds were much larger than those of GR,indicating that B-Si codoped GDY might be a favorable material for more effectively interacting with sulfur reagents.展开更多
Glutinous rice(Oryza sativa var.glutinosa)stands out as one of the most popular rice varieties globally,amidst thousands of rice cultivars.Its increasing popularity is attributed to its rich nutritional compositions a...Glutinous rice(Oryza sativa var.glutinosa)stands out as one of the most popular rice varieties globally,amidst thousands of rice cultivars.Its increasing popularity is attributed to its rich nutritional compositions and health benefits.This review aims to summarize the nutritional compositions,volatile compounds,and health benefits of glutinous rice.Further,in-depth studies are necessary to explore the utilization of glutinous rice in enhancing processing technologies and developing new food products.Glutinous rice has been shown to possess numerous health benefits,including antioxidant activity,bioactive compounds,anti-cancer properties,anti-inflammatory effects,anti-diabetic potential,and cholesterol-lowering effects.Besides its nutritional compositions,the major volatile compounds identified in glutinous rice could serve as a functional food for human consumption.Emerging processing technologies related to glutinous rice are elaborated to improve the latest developments for incorporating them into various food products.展开更多
Quercetin compounds have antioxidant,anti-inflammatory and anticancer pharmacological functions.Longterm exposure to acrylamide(AA)can cause liver injury and endanger human health.However,whether quercetin compounds c...Quercetin compounds have antioxidant,anti-inflammatory and anticancer pharmacological functions.Longterm exposure to acrylamide(AA)can cause liver injury and endanger human health.However,whether quercetin compounds can attenuate AA-induced liver injury and the specific mechanism are not clear.Here,we studied the mechanism and structure-activity relationship of quercetin compounds in reducing AA-induced hepatotoxicity in vivo and in vitro.In vivo studies found that quercetin-like compounds protect against AAinduced liver injury by reducing oxidative stress levels,activating the Akt/m TOR signaling pathway to attenuate autophagy,and improving mitochondrial apoptosis and endoplasmic reticulum stress-mediated apoptosis.In vitro studies found that quercetin compounds protected Hep G2 cells from AA by attenuating the activation of AA-induced autophagy,lowering reactive oxygen species(ROS)levels by exerting antioxidant effects and thus attenuating oxidative stress,increasing mitochondrial membrane potential(MMP),and improving apoptosis-related proteins,thus attenuating AA-induced apoptosis.Furthermore,the conformational differences between quercetin compounds correlated with their protective capacity against AA-induced hepatotoxicity,with quercetin showing the best protective capacity due to its strongest antioxidant activity.In conclusion,quercetin compounds can protect against AA-induced liver injury through multiple pathways of oxidative stress,autophagy and apoptosis,and their protective capacity correlates with antioxidant activity.展开更多
The growth behavior of the complex intermetallic compounds(IMCs)formed at the interface of Cu/SnPbInBiSb high entropy alloy solder joints was explored.The growth inhibition mechanism of the IMCs at the Cu/SnPbInBiSb s...The growth behavior of the complex intermetallic compounds(IMCs)formed at the interface of Cu/SnPbInBiSb high entropy alloy solder joints was explored.The growth inhibition mechanism of the IMCs at the Cu/SnPbInBiSb solid−liquid reaction interface was revealed.The results showed that the growth rate of the complex IMCs obviously decreased at the Cu/SnPbInBiSb solid−liquid reaction interface.The maximum average thickness of IMCs only reached up to 1.66μm after reflowing at 200℃for 10 min.The mechanism for the slow growth of the complex IMCs was analyzed into three aspects.Firstly,the high entropy of the liquid SnPbInBiSb alloy reduced the growth rate of the complex IMCs.Secondly,the distorted lattice of complex IMCs restrained the diffusion of Cu atoms.Lastly,the higher activation energy(40.9 kJ/mol)of Cu/SnPbInBiSb solid−liquid interfacial reaction essentially impeded the growth of the complex IMCs.展开更多
BACKGROUND Volatile organic compounds(VOCs)are a promising potential biomarker that may be able to identify the presence of cancers.AIM To identify exhaled breath VOCs that distinguish pancreatic ductal adenocar-cinom...BACKGROUND Volatile organic compounds(VOCs)are a promising potential biomarker that may be able to identify the presence of cancers.AIM To identify exhaled breath VOCs that distinguish pancreatic ductal adenocar-cinoma(PDAC)from intraductal papillary mucinous neoplasm(IPMN)and healthy volunteers.METHODS We collected exhaled breath from histologically proven PDAC patients,radiological diagnosis IPMN,and healthy volunteers using the ReCIVA®device between 10/2021-11/2022.VOCs were identified by thermal desorption-gas chromatography/field-asymmetric ion mobility spectrometry and compared between groups.RESULTS A total of 156 participants(44%male,mean age 62.6±10.6)were enrolled(54 PDAC,42 IPMN,and 60 controls).Among the nine VOCs identified,two VOCs that showed differences between groups were dimethyl sulfide[0.73 vs 0.74 vs 0.94 arbitrary units(AU),respectively;P=0.008]and acetone dimers(3.95 vs 4.49 vs 5.19 AU,respectively;P<0.001).After adjusting for the imbalance parameters,PDAC showed higher dimethyl sulfide levels than the control and IPMN groups,with adjusted odds ratio(aOR)of 6.98(95%CI:1.15-42.17)and 4.56(1.03-20.20),respectively(P<0.05 both).Acetone dimer levels were also higher in PDAC compared to controls and IPMN(aOR:5.12(1.80-14.57)and aOR:3.35(1.47-7.63),respectively(P<0.05 both).Acetone dimer,but not dimethyl sulfide,performed better than CA19-9 in PDAC diagnosis(AUROC 0.910 vs 0.796).The AUROC of acetone dimer increased to 0.936 when combined with CA19-9,which was better than CA19-9 alone(P<0.05).CONCLUSION Dimethyl sulfide and acetone dimer are VOCs that potentially distinguish PDAC from IPMN and healthy participants.Additional prospective studies are required to validate these findings.展开更多
文摘Related substances in pharmaceutical formulations are associated with their safety, efficacy and stability. However, there is no overall study already published on the assessment of related substances in the Compound Ketoconazole and Clobetasol Propionate Cream. In this work, a reliable HPLC-TOF-MS qualitative method was developed for the analysis of related substances in this preparation with a quick and easy extraction procedure. Besides the active pharmaceutical ingredients, two compounds named ketoconazole impurity B′ optical isomer and ketoconazole impurity E were identified. Furthermore, a new HPLC method for qualitative and quantitative assessment on related substances and degradation products, which were found in the stability test, was established and validated. The single standard to determine multi-components method was applied in the quantitative analysis, which was an effective way for reducing cost and improving accuracy. This study can provide a creative idea for routine analysis of quality control of the Compound Ketoconazole and Clobetasol Propionate Cream.
基金supported by Special key project of technological innovation and application development in Yongchuan District,Chongqing(2021yc-cxfz20002)the special funds of central government for guiding local science and technology developmentthe funds for the platform projects of professional technology innovation(CSTC2018ZYCXPT0006).
文摘To provide new insights into the development and utilization of Douchi artificial starters,three common strains(Aspergillus oryzae,Mucor racemosus,and Rhizopus oligosporus)were used to study their influence on the fermentation of Douchi.The results showed that the biogenic amine contents of the three types of Douchi were all within the safe range and far lower than those of traditional fermented Douchi.Aspergillus-type Douchi produced more free amino acids than the other two types of Douchi,and its umami taste was more prominent in sensory evaluation(P<0.01),while Mucor-type and Rhizopus-type Douchi produced more esters and pyrazines,making the aroma,sauce,and Douchi flavor more abundant.According to the Pearson and PLS analyses results,sweetness was significantly negatively correlated with phenylalanine,cysteine,and acetic acid(P<0.05),bitterness was significantly negatively correlated with malic acid(P<0.05),the sour taste was significantly positively correlated with citric acid and most free amino acids(P<0.05),while astringency was significantly negatively correlated with glucose(P<0.001).Thirteen volatile compounds such as furfuryl alcohol,phenethyl alcohol,and benzaldehyde caused the flavor difference of three types of Douchi.This study provides theoretical basis for the selection of starting strains for commercial Douchi production.
基金supported by National Natural Science Foundation of China(Nos.31871861 and 31501548)The Apicultural Industry Technology System(NCYTI-43-KXJ17)The Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2015-IAR)。
文摘The significant demand for high quality food has motivated us to adopt appropriate processing methods to improve the food nutritional quality and flavors.In this study,the effects of five drying methods,namely,pulsed vacuum drying(PVD),freeze drying(FD),infrared drying(IRD),hot-air drying(HAD)and sun drying(SD)on free amino acids(FAAs),α-dicarbonyl compounds(α-DCs)and volatile compounds(VOCs)in rape bee pollen(RBP)were determined.The results showed that FD significantly released the essential amino acids(EAAs)compared with fresh samples while SD caused the highest loss.Glucosone was the dominantα-DCs in RBP and the highest loss was observed after PVD.Aldehydes were the dominant volatiles of RBP and SD samples contained more new volatile substances(especially aldehydes)than the other four drying methods.Comprehensively,FD and PVD would be potential methods to effectively reduce the quality deterioration of RBP in the drying process.
文摘For the first time, for different organic and inorganic compounds possessing the plastic crystalline phase, a new semiempirical equation describing dependence of their fusion enthalpies on such physico-chemical quantities as normal melting temperature, surface tension, molar volume and critical molar volume is received on the base of the principle of corresponding states and the energy equipartition theorem. Moreover, the proposed equation allows one to take into account the particularities of one-particle molecular rotation in the plastic crystalline phase.
基金funded by the National Natural Science Foundation of China[grant number 42075094]the China Postdoctoral Science Foundation[grant number 2021M691921]+1 种基金the Ministry of Ecology and Environment of the People’s Republic of China[grant number DQGG202121]the Dongying Ecological and Environmental Bureau[grant number 2021DFKY-0779]。
文摘The petroleum industry is a significant source of anthropogenic volatile organic compounds(VOCs),but up to now,its exact impact on urban VOCs and ozone(O_(3))remains unclear.This study conducted year-long VOC ob-servations in Dongying,China,a petroleum industrial region.The VOCs from the petroleum industry(oil and gas volatilization and petrochemical production)were identified by employing the positive matrix factorization model,and their contribution to O_(3) formation was quantitatively evaluated using an observation-based chemical box model.The observed annual average concentration of VOCs was 68.6±63.5 ppbv,with a maximum daily av-erage of 335.3 ppbv.The petroleum industry accounted for 66.5%of total VOCs,contributing 54.9%from oil and gas evaporation and 11.6%from petrochemical production.Model results indicated that VOCs from the petroleum industry contributed to 31%of net O_(3) production,with 21.3%and 34.2%contributions to HO_(2)+NO and RO_(2)+NO pathways,respectively.The larger impact on the RO_(2) pathway is primarily due to the fact that OH+VOCs ac-count for 86.9%of the primary source of RO_(2).This study highlights the critical role of controlling VOCs from the petroleum industry in urban O_(3) pollution,especially those from previously overlooked low-reactivity alkanes.
基金The authors gratefully acknowledge the financial support of the Natural Science Foundation of China,China(Grant No.21975082 and 21736003)the Guangdong Basic and Applied Basic Research Foundation(Grant Number:2019A1515011472 and 2022A1515011341)the Science and Technology Program of Guangzhou(Grant Number:202102080479).
文摘In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl groups, including 2-(2-methoxyphenoxy)-1-phenylethanone, 2-(2-methoxyphenoxy)-1-phenylethanol, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanol, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanol have been selected and their electrochemical properties have been studied experimentally by cyclic voltammetry, and FT-IR spectroelectrochemistry. Combining with electrolysis products distribution analysis and density functional theory calculations, oxidation mechanisms of all six model dimers have been explored. In particular, a total effect from substituents of both para-methoxy(on the aryl ring closing to Cα) and Cα-OH on the oxidation mechanisms has been clearly observed, showing a significant selectivity on the Cα-Cβbond cleavage induced by electrochemical oxidations.
基金funded by the National Science Centre,Poland(Project No.:2017/26/D/NZ6/00136).
文摘Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific microorganisms,enabling the early diagnosis of infections and the timely implementation of tar-geted therapy.However,complex matrices only contain trace levels of VOCs,and their constituent com-ponents can hinder determination of these compounds.Therefore,modern analytical techniques enabling the non-invasive identification and precise quantification of microbial VOCs are needed.In this paper,we discuss bacterial VOC analysis under in vitro conditions,in animal models and disease diagnosis in humans,including techniques for offline and online analysis in clinical settings.We also consider the advantages and limitations of novel microextraction techniques used to prepare biological samples for VOC analysis,in addition to reviewing current clinical studies on bacterial volatilomes that address inter-species in-teractions,the kinetics of VOC metabolism,and species-and drug-resistance specificity.
基金supported by the National Key Research and Development Program of China(2021YFD2100902-3)the National Natural Science Foundation of China(32072258)+5 种基金Major Science and Technology Program of Heilongjiang(2020ZX08B02)Harbin University of Commerce“Young Innovative Talents”Support Program(2019CX062020CX262020CX27)the Central Financial Support for the Development of Local Colleges and Universities,Graduate Innovation Research Project of Harbin University of Commerce(YJSCX2021-698HSD)Training plan of Young Innovative Talents in Universities of Heilongjiang(UNPYSCT-2020218).
文摘The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,and breakdown value to prepare LAB compound starter cultures.The results revealed that Latilactobacillus sakei HSD004 and Lacticaseibacillus rhamnosus HSD005 had apparent advantages in increasing the viscosity and reducing the setback and breakdown values of glutinous rice flour.In particular,the compound starter created using the two abovementioned LAB in the ratio of 3:1 had better performance than that using a single LAB in improving the pasting properties and increasing the water and oil absorption capacity of glutinous rice flour.Moreover,the gelatinization enthalpy of the fermented samples increased significantly.For frozen glutinous rice dough stored for 28 days,the viscoelasticity of frozen dough prepared by compound starter was better than that of control dough,and the freezable water content was lower than that of control dough.These results indicate that compound LAB fermentation is a promising technology in the glutinous rice-based food processing industry,which has significance for its application.
文摘Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous explosive reactions when subjected to external stimuli such as electrical discharge.Therefore,developing a reliable model for predicting their electrostatic discharge sensitivity(ESD)becomes imperative.This study proposes a novel and straightforward model based on the presence of specific groups(-NH_(2) or-NH-,-N=N^(+)-O^(-)and-NNO_(2),-ONO_(2) or-NO_(2))under certain conditions to assess the ESD of NRHECs and their salts,employing interpretable structural parameters.Utilizing a comprehensive dataset comprising 54 ESD measurements of NRHECs and their salts,divided into 49/5 training/test sets,the model achieves promising results.The Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Maximum Error for the training set are reported as 0.16 J,0.12 J,and 0.5 J,respectively.Notably,the ratios RMSE(training)/RMSE(test),MAE(training)/MAE(test),and Max Error(training)/Max Error(test)are all greater than 1.0,indicating the robust predictive capabilities of the model.The presented model demonstrates its efficacy in providing a reliable assessment of ESD for the targeted NRHECs and their salts,without the need for intricate computer codes or expert involvement.
基金supported by the National Key Research and Development Program of China(2022YFB4004100)National Natural Science Foundation of China(U22A20396,22209168)Natural Science Foundation of Anhui Province(2208085UD04)。
文摘Proton exchange membrane fuel cells(PEMFCs)are promising next-generation energy conversion devices with advantages including high energy conversion efficiency,low noise,and environmental friendliness.On the PEMFC cathode,the oxygen reduction reaction(ORR)relies heavily on Pt-based catalysts,where PtM_(x)(M stands for transition metal)intermetallic compounds(IMCs)are considered the best choice to enhance the catalytic activity.However,problems such as inadequate catalytic activity,high cost,and insufficient durability,etc.still hamper its commercialization.The optimizations of the catalyst structure,the improvements in the preparation process,and the understanding of the reaction mechanism are of great value.The developments of cathodic oxygen reduction catalysts for PEMFCs will also focus on improving the catalytic activity of intermetallic compound nanoparticles,the utilization rate,and the durability of Pt.Controlling the particle size and particle/carrier interaction remain key issues for future research.The catalyst reaction mechanism,the surface changes of the nanoparticles of Pt(111)face before and after the catalytic reaction,and the targeted regulation of the adsorption strength between the IMCs and oxygen-containing intermediates adjusted by transition metals need to be investigated more specifically and directly.At the application level,the expression of catalyst properties in the catalyst membrane electrode and reactor are the keys to the performance of PEMFCs.Therefore,researches on PEMFCs are still systematic works.This paper summarized the recent process toward the optimization of catalyst preparation,the exploration of new catalysts,and the new understanding of the mechanism.Given the reference to the development of PEMFCs,future research can start from the existing problems,solve the shortcomings of the catalyst,and promote the practical application of PEMFCs.
基金sponsored by the National Natural Science Foundation of China(Grant No.:32371185)the Shanghai Science and Technology Plan Project,China(Project No.:23010504200)+3 种基金the“Shuguang Program”(Program No.:20SG50)funded by Shanghai Education Development FoundationShanghai Municipale Education Commission,China,the Shanghai Talent Development Fund,China(Grant No.:2020125)the Key Lab of Exercise and Health Sciences of Ministry of Education(Shanghai University of Sport,China)(Grant No.:2022KF001)the Shanghai Key Lab of Human Performance(Shanghai University of Sport,China)(Grant No.:11DZ2261100).
文摘Diabetic nephropathy(DN),a severe complication of diabetes,is widely recognized as a primary contributor to end-stage renal disease.Recent studies indicate that the inflammation triggered by Tolllike receptor 4(TLR4)is of paramount importance in the onset and progression of DN.TLR4 can bind to various ligands,including exogenous ligands such as proteins and polysaccharides from bacteria or viruses,as well as endogenous ligands such as biglycan,fibrinogen,and hyaluronan.In DN,the expression or release of TLR4-related ligands is significantly elevated,resulting in excessive TLR4 activation and increased production of proinflammatory cytokines through downstream signaling pathways.This process is closely associated with the progression of DN.Natural compounds are biologically active products derived from natural sources that have advantages in the treatment of certain diseases.Various types of natural compounds,including alkaloids,flavonoids,polyphenols,terpenoids,glycosides,and polysaccharides,have demonstrated their ability to improve DN by affecting the TLR4 signaling pathway.In this review,we summarize the mechanism of action of TLR4 in DN and the natural compounds that can ameliorate DN by modulating the TLR4 signaling pathway.We specifically highlight the potential of compounds such as curcumin,paclitaxel,berberine,and ursolic acid to inhibit the TLR4 signaling pathway,which provides an important direction of research for the treatment of DN.
基金supported by the National Natural Science Foundation of China(32170408,32000280,and U1802287)the Ten Thousand Talents Plan of Yunnan Province for Industrial Technology Leading Talents(YNWR-CYJS-2019-011)+2 种基金Yunnan Revitalization Talent Support Program“Top Team”Project(202305AT350001)the Training of Technological Innovation Talents of Yunnan Province(202305AD160009 for Huan Yan)the Project of Yunnan Characteristic Plant Screening and R&D Service CXO Platform(2022YKZY001).
文摘Portulaca oleracea L.,commonly known as purslane,is a worldwide weed species belonging to the family Portulacaceae and has been known as“Global Panacea”.As one of the most widely consumed green vegetables and medicinal plants around the world,it has recently been re-evaluated as a potential“new crop”due to the properties that differentiate it as one of the best vegetable sources of omega-3 fatty acid(α-linolenic acid),as well as a variety of nutrients and phytochemicals.Accordingly,emerging research has found that purslane exhibits health-promoting properties like anti-inflammatory,anti-hyperglycemic,antioxidant,neuroprotective,and immunomodulatory.These findings suggest that this species possesses a potential using as a dietary supplement beyond potherb and traditional medicine.This review systematically summarizes the up-to-date research carried out on purslane,including the nutritional compositions,bioactive compounds,and health benefits it exerts as well as limitations,challenges,and future directions of research.Finally,we hope that this review would provide purslane with a comprehensive reference and future scope as functional and health-promoting food for disease prevention and treatment.
文摘Bidens pilosa is a member of the Asteraceae family that is widely distributed across the tropics. It has been utilized by different communities both as food and medicinal herb. This plant and its polyacetylenic compounds hold potential as a natural antidiabetic intervention that can be used to combat this global public health problem. Bioactive compounds found in this plant constitute promising interventions for combating obesity which is a major risk factor for the development of type 2 diabetes. These phytocompounds can work independently or synergistically to modulate appetite, lipase activity, adipogenesis and adipocyte apoptosis. However, the efficacy, mode of action and scope of management of diabetes by these compounds remains elusive. The current review aims to summarize data on efficacy in the management of diabetes, an antidiabetic candidate polyacetylenic compound and possible biological activities as an antidiabetic agent from the available literature. Much emphasis has been directed to cytopiloyne as a representative of polyacetylenic compounds extracted from Bidens pilosa and its activity on diabetic animal models. The majority of the studies conducted on animal models described antidiabetic mechanisms that range from hypoglycemic to secretagogue activity of cytopiloyne in a dose-dependent manner. A clinical trial pilot indicated improved glycemic control of Bidens pilosa formulation among diabetic patients in the study. Bidens pilosa and its compounds are highly potent antidiabetic agent(s) that should be graduated to an intervention for management of diabetes through pre-clinical and clinical trials to elucidate its efficacy and safety.
基金supported by the fund from Natural Science Foundation of Zhejiang Province,China(LY17C200017)。
文摘Hericium erinaceus is a nutritious edible and medicinal fungi,rich in a variety of functional active ingredients,with various physiological functions such as antioxidation,anticancer,and enhancing immunity.It is also effective in protecting the digestive system and preventing neurodegenerative diseases.In this review paper,we summarize the sources,structures and efficacies of the main active components in H.erinaceus fruiting body,mycelium,and culture media,and update the latest research progress on their biological activities and the related molecular mechanisms.Based on this information,we provide detailed challenges in current research,industrialization and information on the active ingredients of H.erinaceus.Perspectives for future studies and new applications of H.erinaceus are proposed.
基金the financial support from the National Natural Science Foundation of China(Grant Nos.:31571493,81741043,31871395,and 32170841).
文摘Arsenic compounds are widely used for the therapeutic intervention of multiple diseases.Ancient pharmacologists discovered the medicinal utility of these highly toxic substances,and modern pharmacologists have further recognized the specific active ingredients in human diseases.In particular,Arsenic trioxide(ATO),as a main component,has therapeutic effects on various tumors(including leukemia,hepatocellular carcinoma,lung cancer,etc.).However,its toxicity limits its efficacy,and controlling the toxicity has been an important issue.Interestingly,recent evidence has pointed out the pivotal roles of arsenic compounds in phase separation and membraneless organelles formation,which may determine their toxicity and therapeutic efficacy.Here,we summarize the arsenic compoundsregulating phase separation and membraneless organelles formation.We further hypothesize their potential involvement in the therapy and toxicity of arsenic compounds,highlighting potential mechanisms underlying the clinical application of arsenic compounds.
基金the support of the National Natural Science Foundation of China(Grant No.51472074).
文摘Understanding the adsorption interactions between carbon materials and sulfur compounds has far-reaching impacts,in addition to their well-known important role in energy storage and conversion,such as lithium-ion batteries.In this paper,properties of intrinsic B or Si single-atom doped,and B-Si codoped graphene(GR)and graphdiyne(GDY)were investigated by using density functional theory-based calculations,in which the optimal doping configurations were explored for potential applications in adsorbing sulfur compounds.Results showed that both B or Si single-atom doping and B-Si codoping could substantially enhance the electron transport properties of GR and GDY,improving their surface activity.Notably,B and Si atoms displayed synergistic effects for the codoped configurations,where B-Si codoped GR/GDY exhibited much better performance in the adsorption of sulfurcontaining chemicals than single-atom doped systems.In addition,results demonstrated that,after B-Si codoping,the adsorption energy and charge transfer amounts of GDY with sulfur compounds were much larger than those of GR,indicating that B-Si codoped GDY might be a favorable material for more effectively interacting with sulfur reagents.
基金the Ministry of Higher Education,Malaysia for financial support via the Transdisciplinary Research Grant Scheme Project(Grant No.TRGS/1/2020/UPM/02/7)。
文摘Glutinous rice(Oryza sativa var.glutinosa)stands out as one of the most popular rice varieties globally,amidst thousands of rice cultivars.Its increasing popularity is attributed to its rich nutritional compositions and health benefits.This review aims to summarize the nutritional compositions,volatile compounds,and health benefits of glutinous rice.Further,in-depth studies are necessary to explore the utilization of glutinous rice in enhancing processing technologies and developing new food products.Glutinous rice has been shown to possess numerous health benefits,including antioxidant activity,bioactive compounds,anti-cancer properties,anti-inflammatory effects,anti-diabetic potential,and cholesterol-lowering effects.Besides its nutritional compositions,the major volatile compounds identified in glutinous rice could serve as a functional food for human consumption.Emerging processing technologies related to glutinous rice are elaborated to improve the latest developments for incorporating them into various food products.
基金supported by the National Natural Science Foundation of China(32072142,31972099)Guangxi Science and Technology Base and Talent Special Projects(Guike AD21220004)。
文摘Quercetin compounds have antioxidant,anti-inflammatory and anticancer pharmacological functions.Longterm exposure to acrylamide(AA)can cause liver injury and endanger human health.However,whether quercetin compounds can attenuate AA-induced liver injury and the specific mechanism are not clear.Here,we studied the mechanism and structure-activity relationship of quercetin compounds in reducing AA-induced hepatotoxicity in vivo and in vitro.In vivo studies found that quercetin-like compounds protect against AAinduced liver injury by reducing oxidative stress levels,activating the Akt/m TOR signaling pathway to attenuate autophagy,and improving mitochondrial apoptosis and endoplasmic reticulum stress-mediated apoptosis.In vitro studies found that quercetin compounds protected Hep G2 cells from AA by attenuating the activation of AA-induced autophagy,lowering reactive oxygen species(ROS)levels by exerting antioxidant effects and thus attenuating oxidative stress,increasing mitochondrial membrane potential(MMP),and improving apoptosis-related proteins,thus attenuating AA-induced apoptosis.Furthermore,the conformational differences between quercetin compounds correlated with their protective capacity against AA-induced hepatotoxicity,with quercetin showing the best protective capacity due to its strongest antioxidant activity.In conclusion,quercetin compounds can protect against AA-induced liver injury through multiple pathways of oxidative stress,autophagy and apoptosis,and their protective capacity correlates with antioxidant activity.
基金supported by the National Natural Science Foundation of China (No.U2241223)the Heilongjiang Touyan Innovation Team Program,China (No.HITTY-20190013)the Fundamental Research Funds for the Central Universities,China (No.AUEA5770400622)。
文摘The growth behavior of the complex intermetallic compounds(IMCs)formed at the interface of Cu/SnPbInBiSb high entropy alloy solder joints was explored.The growth inhibition mechanism of the IMCs at the Cu/SnPbInBiSb solid−liquid reaction interface was revealed.The results showed that the growth rate of the complex IMCs obviously decreased at the Cu/SnPbInBiSb solid−liquid reaction interface.The maximum average thickness of IMCs only reached up to 1.66μm after reflowing at 200℃for 10 min.The mechanism for the slow growth of the complex IMCs was analyzed into three aspects.Firstly,the high entropy of the liquid SnPbInBiSb alloy reduced the growth rate of the complex IMCs.Secondly,the distorted lattice of complex IMCs restrained the diffusion of Cu atoms.Lastly,the higher activation energy(40.9 kJ/mol)of Cu/SnPbInBiSb solid−liquid interfacial reaction essentially impeded the growth of the complex IMCs.
基金The study protocol was reviewed and approved by the Institutional Research Committee,Faculty of Medicine,Chulalongkorn University(No.0482/65)registered in the Thai Clinical Trials Registry(TCTR20211109002).
文摘BACKGROUND Volatile organic compounds(VOCs)are a promising potential biomarker that may be able to identify the presence of cancers.AIM To identify exhaled breath VOCs that distinguish pancreatic ductal adenocar-cinoma(PDAC)from intraductal papillary mucinous neoplasm(IPMN)and healthy volunteers.METHODS We collected exhaled breath from histologically proven PDAC patients,radiological diagnosis IPMN,and healthy volunteers using the ReCIVA®device between 10/2021-11/2022.VOCs were identified by thermal desorption-gas chromatography/field-asymmetric ion mobility spectrometry and compared between groups.RESULTS A total of 156 participants(44%male,mean age 62.6±10.6)were enrolled(54 PDAC,42 IPMN,and 60 controls).Among the nine VOCs identified,two VOCs that showed differences between groups were dimethyl sulfide[0.73 vs 0.74 vs 0.94 arbitrary units(AU),respectively;P=0.008]and acetone dimers(3.95 vs 4.49 vs 5.19 AU,respectively;P<0.001).After adjusting for the imbalance parameters,PDAC showed higher dimethyl sulfide levels than the control and IPMN groups,with adjusted odds ratio(aOR)of 6.98(95%CI:1.15-42.17)and 4.56(1.03-20.20),respectively(P<0.05 both).Acetone dimer levels were also higher in PDAC compared to controls and IPMN(aOR:5.12(1.80-14.57)and aOR:3.35(1.47-7.63),respectively(P<0.05 both).Acetone dimer,but not dimethyl sulfide,performed better than CA19-9 in PDAC diagnosis(AUROC 0.910 vs 0.796).The AUROC of acetone dimer increased to 0.936 when combined with CA19-9,which was better than CA19-9 alone(P<0.05).CONCLUSION Dimethyl sulfide and acetone dimer are VOCs that potentially distinguish PDAC from IPMN and healthy participants.Additional prospective studies are required to validate these findings.