为了建立水禽细小病毒(WPV)快速检测方法,根据序列比对结果在水禽细小病毒NS基因SF3保守区域内设计特异性引物,建立SYBR Green Ⅰ荧光定量PCR通用检测方法。该方法的扩增效率(E)为90.0%,相关系数(R~2)=0.99,标准曲线方程为y=-3.607x+38....为了建立水禽细小病毒(WPV)快速检测方法,根据序列比对结果在水禽细小病毒NS基因SF3保守区域内设计特异性引物,建立SYBR Green Ⅰ荧光定量PCR通用检测方法。该方法的扩增效率(E)为90.0%,相关系数(R~2)=0.99,标准曲线方程为y=-3.607x+38.77;除WPV出现S形扩增曲线外,新城疫病毒(NDV)、H9亚型禽流感病毒(H9 AIV)、鸭坦布苏病毒(DTMUV)、鸭肝炎病毒(DHAV)、鸭肠炎病毒(DEV)、鸭呼肠孤病毒(DRV)样品均未出现S形阳性扩增曲线;批内变异系数(CV)为0.15%~0.23%,批间变异系数为0.09%~0.28%。结果表明,SYBR Green Ⅰ荧光定量PCR检测方法重复性好、灵敏度高和特异性强。临床样品检测结果表明,SYBR Green Ⅰ荧光定量PCR与普通PCR的符合率达98.4%,灵敏度是普通PCR的1 000倍。SYBR Green Ⅰ荧光定量PCR检测方法不仅能定性检测WPV,还可以进行定量检测,可用于种鸭场、种鹅场的WPV净化检测,也可用于WPV临床大量样品的快速检测。展开更多
为了建立高效、灵敏的猪流行性腹泻病毒(PEDV)检测方法,本研究从GenBank数据库中获取PEDV N基因序列,扩增出PEDV N基因标准质粒,并在N基因的保守区域内设计了一对特异性荧光定量引物,成功建立了SYBR Green I实时荧光定量PCR检测方法。...为了建立高效、灵敏的猪流行性腹泻病毒(PEDV)检测方法,本研究从GenBank数据库中获取PEDV N基因序列,扩增出PEDV N基因标准质粒,并在N基因的保守区域内设计了一对特异性荧光定量引物,成功建立了SYBR Green I实时荧光定量PCR检测方法。经过一系列试验表明,该检测方法线性关系良好,R^(2)值为0.99;特异性强,敏感性高,最低可检测至2.23 copies/μL,比普通PCR灵敏约100倍;重复性好,组内变异系数为0.25%~0.43%,组间变异系数为0.67%~0.97%;对于各地区96份临床样品检测出PEDV阳性率为25%。本研究建立的实时荧光定量PCR检测方法为PEDV的临床诊断、流行病学调查以及定量研究提供了有效的检测工具。展开更多
A new and simple route for the synthesis of α,β-unsaturated ketones via cleavage of the C-C(O)C single bond of monoalkylated β-diketone has been described. The reaction was catalyzed by copper, a cheap transition m...A new and simple route for the synthesis of α,β-unsaturated ketones via cleavage of the C-C(O)C single bond of monoalkylated β-diketone has been described. The reaction was catalyzed by copper, a cheap transition metal in a weakly basic medium (K<sub>3</sub>PO<sub>4</sub>) at room temperature. To carry out this study, we first had to synthesize the monoalkylated β-diketones 1. Afterwards, α,β-unsaturated ketones 2 were obtained with high yields around 80%. Finally, all the products were characterized by 1H NMR, 13C NMR, and HRMS spectra. .展开更多
The construction of a food certification system plays a vital role in upgrading export quality, which previous studies have largely overlooked. We match China's industry-level data of Green Food Certification with...The construction of a food certification system plays a vital role in upgrading export quality, which previous studies have largely overlooked. We match China's industry-level data of Green Food Certification with its HS6-digit export data of agri-food products to quantify the impact of Green Food Certification on export quality. We identify the significant and positive effect of Green Food Certification on export quality. The 2SLS estimation based on instrumental variables and a range of robustness checks confirm the validity and robustness of the benchmark conclusions. Further analysis discloses that Green Food Certification improves export quality by raising agricultural production efficiency and brand premiums. Heterogeneity analysis shows that the effect of Green Food Certification varies across regions, notably improving the quality of agri-food products exported to developed regions and regions with high levels of import supervision. Furthermore, among various product types, Green Food Certification significantly improves the export quality of primary products and products vulnerable to non-tariff measures. The above findings could guide the future development of agri-food quality certification systems, potentially leading to a transformation and promotion of the agri-food trade.展开更多
Urbanization has profound impacts on ecological environments.Green spaces are a vital component of urban ecosystems and play a crucial role in maintaining ecologi-cal balance and enhancing sustainability.This study ai...Urbanization has profound impacts on ecological environments.Green spaces are a vital component of urban ecosystems and play a crucial role in maintaining ecologi-cal balance and enhancing sustainability.This study aimed to investigate the community composition characteristics of butterflies in urban green spaces within the context of rapid urbanization.Simultaneously,it explored the status and dif-ferences in butterfly taxonomic diversity,functional diver-sity,and functional traits among different types of urban green spaces,regions,and urban gradients to provide rel-evant insights for further improving urban green space qual-ity and promoting biodiversity conservation.We conducted a year-long survey of 80 green spaces across different urban Project funding:This work was funded by the National Non Profit Research Institutions of the Chinese Academy of Forestry(CAFYBB2020ZB008),National Natural Science Foundation of China(32371936),and the Research Projects in Anhui Universities in 2022(n atural sciences)(2022AH051874).regions and ring roads within Hefei City,Anhui Province,with monthly sampling intervals over 187 transects.A total of 4822 butterflies,belonging to 5 families,17 subfamilies,40 genera,and 55 species were identified.The species rich-ness,Shannon,Simpson,functional richness,and Rao’s quadratic entropy indices of butterflies in urban park green spaces were all significantly higher than those in residential and street green spaces(P<0.05).Differences in butterfly diversity and functional traits among different urban regions and ring roads were relatively minor,and small-sized,multi-voltine,and long flying duration butterflies dominated urban green spaces.Overall,these spaces offer more favorable hab-itats for butterflies.However,some residential green spaces and street green spaces demonstrate potential for butterfly conservation.展开更多
The catechin Epigallocatechin-3-O-Gallate (EGCG) which is found in of Green Tea extracts (GTE), displays a variety of microbicidal properties. It is largely believed that EGCG inhibits the growth of cariogenic and per...The catechin Epigallocatechin-3-O-Gallate (EGCG) which is found in of Green Tea extracts (GTE), displays a variety of microbicidal properties. It is largely believed that EGCG inhibits the growth of cariogenic and periodontopathic bacteria. Objective: In this paper we compared the inhibitory activity of EGCG and a commercial GTE on the growth of Veillonella parvula. Chlorhexidine was used as positive control. Methodology: V. parvula ATCC 10790 and a clinical isolate obtained from a periodontal disease patient were cultured in the presence of EGCG or a commercial GTE, and the measurements of bacterial growth inhibition were compared to the values obtained with 0.12 and 0.2% chlorhexidine. Results: Chlorhexidine inhibited bacterial growth, however in contrast to a previous report, neither EGCG nor the GTE showed any effect on bacterial growth. Conclusions: The data show and confirm that chlorhexidine is a growth inhibitor of V. parvula while EGCG and GTE do not display such effect.展开更多
Three kinds of iron nanoparticles(FeNPs)were prepared via green route based on pomegranate(PG),green tea(GT),and mulberry(ML)extracts under ambient conditions.The obtained materials were characterized by scanning elec...Three kinds of iron nanoparticles(FeNPs)were prepared via green route based on pomegranate(PG),green tea(GT),and mulberry(ML)extracts under ambient conditions.The obtained materials were characterized by scanning electron microscopy(SEM),transmission electronic microscopy(TEM),X-ray energy-dispersive spectrometer(EDS),X-ray diffraction(XRD),fourier transform infrared spectroscopy(FTIR),and X-ray photoelectron spectroscopy(XPS)techniques.The experimental results show that FeNPs were in the form of amorphous iron(Ⅱ,Ⅲ)-polyphenol complex with different dispersity and morphologies.GT-Fe has the smallest size range of 25-35 nm,PG-Fe has a moderate size-distribution of 30-40 nm,while ML-Fe formed a tuberous net-type with a sheeting structure.PG-Fe displays the highest removal efficiency of 90.2%in 20 min towards cationic dye of malachite green(16.6%by ML-Fe and 69.3%by GT-Fe),which is attributed to its highest polyphenol content,lowest zeta potential,as well as the most Fe^(2+)on the surface of FeNPs.The removal mechanism was mainly induced by electrostatic adsorption based on pH and zeta potential tests.展开更多
The green innovation value chain is a key step in transforming green,innovative scientific,and technological achievements into productive forces.The establishment of green innovation value chains based on value distri...The green innovation value chain is a key step in transforming green,innovative scientific,and technological achievements into productive forces.The establishment of green innovation value chains based on value distribution rather than technical conditions can effectively overcome the common bottleneck faced by different nations during their green innovation endeavors,namely,the substitution of conventional products with green alternatives.This study investigates the impeded diffusion of green products and their underlying causes,analyzes the internal structure and mechanism of the green innovation value chain,and explores the establishment of regional green innovation value chains and the models available for value chain upgrading.展开更多
Laparoscopic cholecystectomy(LC)remains one of the most commonly performed procedures in adult and paediatric populations.Despite the advances made in intraoperative biliary anatomy recognition,iatrogenic bile duct in...Laparoscopic cholecystectomy(LC)remains one of the most commonly performed procedures in adult and paediatric populations.Despite the advances made in intraoperative biliary anatomy recognition,iatrogenic bile duct injuries during LC represent a fatal complication and consist an economic burden for healthcare systems.A series of methods have been proposed to prevent bile duct injury,among them the use of indocyanine green(ICG)fluorescence.The most commonly reported method of ICG injection is the intravenous administration,while literature is lacking studies investigating the direct intragallbladder ICG injection.This narrative mini-review aims to assess the potential applications,usefulness,and limitations of intragallbladder ICG fluorescence in LC.Authors screened the available international literature to identify the reports of intragallbladder ICG fluorescence imaging in minimally invasive cholecystectomy,as well as special issues regarding its use.Literature search retrieved four prospective cohort studies,three case-control studies,and one case report.In the three case-control studies selected,intragallbladder near-infrared cholangiography(NIRC)was compared with standard LC under white light,with intravenous administration of ICG for NIRC and with standard intraoperative cholangiography(IOC).In total,133 patients reported in the literature have been administered intragallbladder ICG administration for biliary mapping during LC.Literature includes several reports of intragallbladder ICG administration,but a standardized technique has not been established yet.Published data suggest that NIRC with intragallbladder ICG injection is a promising method to achieve biliary mapping,overwhelming limitations of IOC including intervention and radiation exposure,as well as the high hepatic parenchyma signal and time interval needed in intravenous ICG fluorescence.Evidence-based guidelines on the role of intragallbladder ICG fluorescence in LC require the assessment of further studies and multicenter data collection into large registries.展开更多
Nanotechnology is a rapidly growing field in biomedical engineering with references to efficiency, safety, and cost-effective approaches. Herein, the objective of this study was to examine an innovative approach to ra...Nanotechnology is a rapidly growing field in biomedical engineering with references to efficiency, safety, and cost-effective approaches. Herein, the objective of this study was to examine an innovative approach to rapidly synthesis silver nanoparticles from an aqueous extract of medicinal mushroom Ganoderma lucidum (also known as reishi). The structural and dimensional dispersion of the biosynthesized silver nanoparticles from reishi was confirmed by UV-Vis spectrophotometer (UV-Vis) and Scanning Electron Microscopy (SEM) analysis. Additionally, the biosynthesized silver nanoparticles from resihi were used to explore their potential antimicrobial activity against Staphylococcus aureus and Micrococcus luteus and Escherichia coli and Klebsiella pneumoniae. The results from this study revealed that the silver nanoparticles mediated by reishi adopted a spherical shape morphology with sizes, less than 100 nm and revealed strong absorption plasmon band at 440 nm. Furthermore, the biosynthesized silver nanoparticles from reishi exhibited antibacterial activity against the tested S. aureus and M. luteus and E. coli and K. pneumoniae by altering their morphology which signifies their biomedical potential.展开更多
A series of spinel-type Mg_(0.25-x)Al_(2.57)O_(3.79)N_(0.21):xMn^(2+)(MgAlON:xMn^(2+))phosphors were synthesized by the solid-state reaction route.The transparent ceramic phosphors were fabricated by pressureless sint...A series of spinel-type Mg_(0.25-x)Al_(2.57)O_(3.79)N_(0.21):xMn^(2+)(MgAlON:xMn^(2+))phosphors were synthesized by the solid-state reaction route.The transparent ceramic phosphors were fabricated by pressureless sintering followed by hot-isostatic pressing(HIP).The crystal structure,luminescence and mechanical properties of the samples were systematically investigated.The transparent ceramic phosphors with tetrahedrally coordinated Mn^(2+)show strong green emission centered around 515 nm under blue light excitation.As the Mn^(2+)concentration increases,the crystal lattice expands slightly,resulting in a variation of crystal field and a slight red-shift of green emission peak.Six weak absorption peaks in the transmittance spectra originate from the spin-forbidden ^(4)T_(1)(^(4)G)→^(6)A_(1) transition of Mn^(2+).The decay time was found to decrease from 5.66 to 5.16 ms with the Mn^(2+)concentration.The present study contributes to the systematic understanding of crystal structure and properties of MgAlON:xMn^(2+)green-emitting transparent ceramic phosphor which has a potential application in high-power light-emitting diodes.展开更多
The optimization of government subsidies to enhance the efficiency of coal companies’green transformation constitutes a critical component in the pursuit of global sustainability.We investigate the influence mechanis...The optimization of government subsidies to enhance the efficiency of coal companies’green transformation constitutes a critical component in the pursuit of global sustainability.We investigate the influence mechanism of government subsidies on the green transformation using data from the listed coal companies in China from 2007 to 2022.According to our findings and hypothesis testing,previous government subsidies did not have a significant direct impact on coal companies’green transformation.Nevertheless,government subsidies can help coal companies transition to greener practices by promoting innovative green initiatives.Furthermore,we confirmed an indirect route:that government subsidies enable the adoption of low-carbon initiatives,which in turn could facilitate the transition of coal companies towards green practices.In addition,we discovered that the coal company’s digitization will improve this indirect route.Thus,we propose increasing the effectiveness of government subsidies in facilitating coal companies’transition to green practices by focusing on technological advancements and enhancing company digitalization.展开更多
Graphene-based materials possess significant potential for the treatment of dye wastewater due to their exceptional adsorption properties toward stubborn pollutants.However,their utilization is hindered by high prepar...Graphene-based materials possess significant potential for the treatment of dye wastewater due to their exceptional adsorption properties toward stubborn pollutants.However,their utilization is hindered by high preparation costs,low yields,environmental pollution during synthesis,and challenges in regenerating the adsorbent.This study proposes a novel approach to address these limitations by developing nitrogen-doped three-dimensional(3D)polyvinyl alcohol(PVA)crosslinked graphene sponges(N-PGA)using a cross-linking method with ammonium carbonate.This method offers a relatively mild,environmentally friendly approach.Ammonium carbonate serves as both a reducing and modifying agent,facilitating the formation of the intrinsic structure of N-PGA and acting as a nitrogen source.Meanwhile,PVA is utilized as the cross-linking agent.The results demonstrate that N-PGA exhibits a favorable internal 3D hierarchical porous structure and possesses robust mechanical properties.The measured specific surface area(BET)of N-PGA was as high as406.538 m^(2)·g^(-1),which was favorable for its efficient adsorption of Congo red(CR)dye molecules.At an initial concentration of 50 mg·L^(-1),N-PGA achieved an impressive removal rate of 89.6%and an adsorption capacity of 112 mg·g^(-1)for CR dye.Furthermore,it retained 79%of its initial adsorption capacity after 10 cycles,demonstrating excellent regeneration performance.In summary,the synthesized N-PGA displays remarkable efficacy in the adsorption of CR dye in wastewater,opening up new possibilities for utilizing 3D porous graphene nanomaterials as efficient adsorbents in wastewater treatment.展开更多
Green synthesis of silver nanoparticles (AgNPs) using aqueous extracts of orange and lemon peels, as a reducing agent, and silver nitrate salts as a source of silver ions is a promising field of research due to the ve...Green synthesis of silver nanoparticles (AgNPs) using aqueous extracts of orange and lemon peels, as a reducing agent, and silver nitrate salts as a source of silver ions is a promising field of research due to the versatility of biomedical applications of metal nanoparticles. In this paper, AgNPs were synthetized at different reaction parameters such as the type and concentration of the extracts, metal salt concentration, temperature, speed stirring, and pH. The antibacterial properties of the obtained silver nanoparticles against E. coli, as well as the physical and chemical characteristics of the synthesized silver nanoparticles, were investigated. UV-Vis spectroscopy was used to confirm the formation of AgNPs. In addition to green biogenic synthesis, chemical synthesis of silver nanoparticles was also carried out. The optimal temperature for extraction was 65˚C, while for the synthesis of AgNPs was 35˚C. The synthesis is carried out in an acidic environment (pH = 4.7 orange and pH = 3.8 lemon), neutral (pH = 7) and alkaline (pH = 10), then for different concentrations of silver nitrate solution (0.5 mM - 1 mM), optimal time duration of the reaction was 60 min and optimal stirring speed rotation was 250 rpm on the magnetic stirrer. The physical properties of the synthesized silver nanoparticles (conductivity, density and refractive index) were also studied, and the passage of laser light through the obtained solution and distilled water was compared. Positive inhibitory effect on the growth of new Escherichia coli colonies have shown AgNPs synthesized at a basic pH value and at a 0.1 mM AgNO<sub>3</sub> using orange or lemon peel extract, while for a 0.5 mM AgNO<sub>3 </sub>using lemon peel extract.展开更多
文摘为了建立水禽细小病毒(WPV)快速检测方法,根据序列比对结果在水禽细小病毒NS基因SF3保守区域内设计特异性引物,建立SYBR Green Ⅰ荧光定量PCR通用检测方法。该方法的扩增效率(E)为90.0%,相关系数(R~2)=0.99,标准曲线方程为y=-3.607x+38.77;除WPV出现S形扩增曲线外,新城疫病毒(NDV)、H9亚型禽流感病毒(H9 AIV)、鸭坦布苏病毒(DTMUV)、鸭肝炎病毒(DHAV)、鸭肠炎病毒(DEV)、鸭呼肠孤病毒(DRV)样品均未出现S形阳性扩增曲线;批内变异系数(CV)为0.15%~0.23%,批间变异系数为0.09%~0.28%。结果表明,SYBR Green Ⅰ荧光定量PCR检测方法重复性好、灵敏度高和特异性强。临床样品检测结果表明,SYBR Green Ⅰ荧光定量PCR与普通PCR的符合率达98.4%,灵敏度是普通PCR的1 000倍。SYBR Green Ⅰ荧光定量PCR检测方法不仅能定性检测WPV,还可以进行定量检测,可用于种鸭场、种鹅场的WPV净化检测,也可用于WPV临床大量样品的快速检测。
文摘A new and simple route for the synthesis of α,β-unsaturated ketones via cleavage of the C-C(O)C single bond of monoalkylated β-diketone has been described. The reaction was catalyzed by copper, a cheap transition metal in a weakly basic medium (K<sub>3</sub>PO<sub>4</sub>) at room temperature. To carry out this study, we first had to synthesize the monoalkylated β-diketones 1. Afterwards, α,β-unsaturated ketones 2 were obtained with high yields around 80%. Finally, all the products were characterized by 1H NMR, 13C NMR, and HRMS spectra. .
基金supported by the National Natural Science Foundation of China(72061147002)the National Social Science Foundation of China(18ZDA074)。
文摘The construction of a food certification system plays a vital role in upgrading export quality, which previous studies have largely overlooked. We match China's industry-level data of Green Food Certification with its HS6-digit export data of agri-food products to quantify the impact of Green Food Certification on export quality. We identify the significant and positive effect of Green Food Certification on export quality. The 2SLS estimation based on instrumental variables and a range of robustness checks confirm the validity and robustness of the benchmark conclusions. Further analysis discloses that Green Food Certification improves export quality by raising agricultural production efficiency and brand premiums. Heterogeneity analysis shows that the effect of Green Food Certification varies across regions, notably improving the quality of agri-food products exported to developed regions and regions with high levels of import supervision. Furthermore, among various product types, Green Food Certification significantly improves the export quality of primary products and products vulnerable to non-tariff measures. The above findings could guide the future development of agri-food quality certification systems, potentially leading to a transformation and promotion of the agri-food trade.
基金funded by the National Non Profit Research Institutions of the Chinese Academy of Forestry(CAFYBB2020ZB008)National Natural Science Foundation of China(32371936)the Research Projects in Anhui Universities in 2022(natural sciences)(2022AH051874).
文摘Urbanization has profound impacts on ecological environments.Green spaces are a vital component of urban ecosystems and play a crucial role in maintaining ecologi-cal balance and enhancing sustainability.This study aimed to investigate the community composition characteristics of butterflies in urban green spaces within the context of rapid urbanization.Simultaneously,it explored the status and dif-ferences in butterfly taxonomic diversity,functional diver-sity,and functional traits among different types of urban green spaces,regions,and urban gradients to provide rel-evant insights for further improving urban green space qual-ity and promoting biodiversity conservation.We conducted a year-long survey of 80 green spaces across different urban Project funding:This work was funded by the National Non Profit Research Institutions of the Chinese Academy of Forestry(CAFYBB2020ZB008),National Natural Science Foundation of China(32371936),and the Research Projects in Anhui Universities in 2022(n atural sciences)(2022AH051874).regions and ring roads within Hefei City,Anhui Province,with monthly sampling intervals over 187 transects.A total of 4822 butterflies,belonging to 5 families,17 subfamilies,40 genera,and 55 species were identified.The species rich-ness,Shannon,Simpson,functional richness,and Rao’s quadratic entropy indices of butterflies in urban park green spaces were all significantly higher than those in residential and street green spaces(P<0.05).Differences in butterfly diversity and functional traits among different urban regions and ring roads were relatively minor,and small-sized,multi-voltine,and long flying duration butterflies dominated urban green spaces.Overall,these spaces offer more favorable hab-itats for butterflies.However,some residential green spaces and street green spaces demonstrate potential for butterfly conservation.
文摘The catechin Epigallocatechin-3-O-Gallate (EGCG) which is found in of Green Tea extracts (GTE), displays a variety of microbicidal properties. It is largely believed that EGCG inhibits the growth of cariogenic and periodontopathic bacteria. Objective: In this paper we compared the inhibitory activity of EGCG and a commercial GTE on the growth of Veillonella parvula. Chlorhexidine was used as positive control. Methodology: V. parvula ATCC 10790 and a clinical isolate obtained from a periodontal disease patient were cultured in the presence of EGCG or a commercial GTE, and the measurements of bacterial growth inhibition were compared to the values obtained with 0.12 and 0.2% chlorhexidine. Results: Chlorhexidine inhibited bacterial growth, however in contrast to a previous report, neither EGCG nor the GTE showed any effect on bacterial growth. Conclusions: The data show and confirm that chlorhexidine is a growth inhibitor of V. parvula while EGCG and GTE do not display such effect.
基金Funded by the Hubei Provincial Natural Science Foundation of China(No.2024AFB946)the Excellent Young and Middle-aged Science and Technology Innovation Team Plan of Hubei Colleges(No.T201824)。
文摘Three kinds of iron nanoparticles(FeNPs)were prepared via green route based on pomegranate(PG),green tea(GT),and mulberry(ML)extracts under ambient conditions.The obtained materials were characterized by scanning electron microscopy(SEM),transmission electronic microscopy(TEM),X-ray energy-dispersive spectrometer(EDS),X-ray diffraction(XRD),fourier transform infrared spectroscopy(FTIR),and X-ray photoelectron spectroscopy(XPS)techniques.The experimental results show that FeNPs were in the form of amorphous iron(Ⅱ,Ⅲ)-polyphenol complex with different dispersity and morphologies.GT-Fe has the smallest size range of 25-35 nm,PG-Fe has a moderate size-distribution of 30-40 nm,while ML-Fe formed a tuberous net-type with a sheeting structure.PG-Fe displays the highest removal efficiency of 90.2%in 20 min towards cationic dye of malachite green(16.6%by ML-Fe and 69.3%by GT-Fe),which is attributed to its highest polyphenol content,lowest zeta potential,as well as the most Fe^(2+)on the surface of FeNPs.The removal mechanism was mainly induced by electrostatic adsorption based on pH and zeta potential tests.
基金the part of the“Research on Paths to High-quality Development in Agriculture Against the Backdrop of Rural Revitalization,”a project of the Publicity Department of the CPC Central Committee for Young Talents in Publicity,Socialist Thought and Cultural Promotionthe National Social Science Fund of China-supported project,“Research on Theoretical Logic and Realization Path of Urban-Rural Integration Based on Industrial Internet”(21XJL001)+1 种基金the major project of Sichuan province in philosophy and social science planning,“Research on the Innovation and Policy Adaptation of Sichuan’s Agricultural Green Development System under the‘Dual Carbon’Goal”(SC22ZDYC44)the key project of Sichuan province in soft science research and planning,“Research on the Path to Peak Carbon and Carbon Neutrality of the Agricultural Sector in Rural Areas of Sichuan Province”(2022JDR0157).
文摘The green innovation value chain is a key step in transforming green,innovative scientific,and technological achievements into productive forces.The establishment of green innovation value chains based on value distribution rather than technical conditions can effectively overcome the common bottleneck faced by different nations during their green innovation endeavors,namely,the substitution of conventional products with green alternatives.This study investigates the impeded diffusion of green products and their underlying causes,analyzes the internal structure and mechanism of the green innovation value chain,and explores the establishment of regional green innovation value chains and the models available for value chain upgrading.
文摘Laparoscopic cholecystectomy(LC)remains one of the most commonly performed procedures in adult and paediatric populations.Despite the advances made in intraoperative biliary anatomy recognition,iatrogenic bile duct injuries during LC represent a fatal complication and consist an economic burden for healthcare systems.A series of methods have been proposed to prevent bile duct injury,among them the use of indocyanine green(ICG)fluorescence.The most commonly reported method of ICG injection is the intravenous administration,while literature is lacking studies investigating the direct intragallbladder ICG injection.This narrative mini-review aims to assess the potential applications,usefulness,and limitations of intragallbladder ICG fluorescence in LC.Authors screened the available international literature to identify the reports of intragallbladder ICG fluorescence imaging in minimally invasive cholecystectomy,as well as special issues regarding its use.Literature search retrieved four prospective cohort studies,three case-control studies,and one case report.In the three case-control studies selected,intragallbladder near-infrared cholangiography(NIRC)was compared with standard LC under white light,with intravenous administration of ICG for NIRC and with standard intraoperative cholangiography(IOC).In total,133 patients reported in the literature have been administered intragallbladder ICG administration for biliary mapping during LC.Literature includes several reports of intragallbladder ICG administration,but a standardized technique has not been established yet.Published data suggest that NIRC with intragallbladder ICG injection is a promising method to achieve biliary mapping,overwhelming limitations of IOC including intervention and radiation exposure,as well as the high hepatic parenchyma signal and time interval needed in intravenous ICG fluorescence.Evidence-based guidelines on the role of intragallbladder ICG fluorescence in LC require the assessment of further studies and multicenter data collection into large registries.
文摘Nanotechnology is a rapidly growing field in biomedical engineering with references to efficiency, safety, and cost-effective approaches. Herein, the objective of this study was to examine an innovative approach to rapidly synthesis silver nanoparticles from an aqueous extract of medicinal mushroom Ganoderma lucidum (also known as reishi). The structural and dimensional dispersion of the biosynthesized silver nanoparticles from reishi was confirmed by UV-Vis spectrophotometer (UV-Vis) and Scanning Electron Microscopy (SEM) analysis. Additionally, the biosynthesized silver nanoparticles from resihi were used to explore their potential antimicrobial activity against Staphylococcus aureus and Micrococcus luteus and Escherichia coli and Klebsiella pneumoniae. The results from this study revealed that the silver nanoparticles mediated by reishi adopted a spherical shape morphology with sizes, less than 100 nm and revealed strong absorption plasmon band at 440 nm. Furthermore, the biosynthesized silver nanoparticles from reishi exhibited antibacterial activity against the tested S. aureus and M. luteus and E. coli and K. pneumoniae by altering their morphology which signifies their biomedical potential.
基金Funded by the National Natural Science Foundation of China(No.52272072)the Independent Innovation Projects of the Hubei Longzhong Laboratory(No.2022ZZ-13)。
文摘A series of spinel-type Mg_(0.25-x)Al_(2.57)O_(3.79)N_(0.21):xMn^(2+)(MgAlON:xMn^(2+))phosphors were synthesized by the solid-state reaction route.The transparent ceramic phosphors were fabricated by pressureless sintering followed by hot-isostatic pressing(HIP).The crystal structure,luminescence and mechanical properties of the samples were systematically investigated.The transparent ceramic phosphors with tetrahedrally coordinated Mn^(2+)show strong green emission centered around 515 nm under blue light excitation.As the Mn^(2+)concentration increases,the crystal lattice expands slightly,resulting in a variation of crystal field and a slight red-shift of green emission peak.Six weak absorption peaks in the transmittance spectra originate from the spin-forbidden ^(4)T_(1)(^(4)G)→^(6)A_(1) transition of Mn^(2+).The decay time was found to decrease from 5.66 to 5.16 ms with the Mn^(2+)concentration.The present study contributes to the systematic understanding of crystal structure and properties of MgAlON:xMn^(2+)green-emitting transparent ceramic phosphor which has a potential application in high-power light-emitting diodes.
基金supported by the China National Natural Sciences Fund Project(Nos.71874190 and 72403233)Jiangsu Provincial Department of Science and Technology Program(Innovation Support Program Soft Science Research)(No.BR2023016-4)+2 种基金China Postdoctoral Science Foundation(No.2024M753503)Key Projects Funded by Jiangsu Social Science Fund(No.21GLA003)The Ministry of Education of Humanities and Social Science Project.
文摘The optimization of government subsidies to enhance the efficiency of coal companies’green transformation constitutes a critical component in the pursuit of global sustainability.We investigate the influence mechanism of government subsidies on the green transformation using data from the listed coal companies in China from 2007 to 2022.According to our findings and hypothesis testing,previous government subsidies did not have a significant direct impact on coal companies’green transformation.Nevertheless,government subsidies can help coal companies transition to greener practices by promoting innovative green initiatives.Furthermore,we confirmed an indirect route:that government subsidies enable the adoption of low-carbon initiatives,which in turn could facilitate the transition of coal companies towards green practices.In addition,we discovered that the coal company’s digitization will improve this indirect route.Thus,we propose increasing the effectiveness of government subsidies in facilitating coal companies’transition to green practices by focusing on technological advancements and enhancing company digitalization.
基金supported by the National Natural Science Foundation of China(51671052,51750110513,52250610222)the Fundamental Research Funds for the Central Universities(N182502042)the Liao Ning Revitilization Talents Program(XLYC1902105)。
文摘Graphene-based materials possess significant potential for the treatment of dye wastewater due to their exceptional adsorption properties toward stubborn pollutants.However,their utilization is hindered by high preparation costs,low yields,environmental pollution during synthesis,and challenges in regenerating the adsorbent.This study proposes a novel approach to address these limitations by developing nitrogen-doped three-dimensional(3D)polyvinyl alcohol(PVA)crosslinked graphene sponges(N-PGA)using a cross-linking method with ammonium carbonate.This method offers a relatively mild,environmentally friendly approach.Ammonium carbonate serves as both a reducing and modifying agent,facilitating the formation of the intrinsic structure of N-PGA and acting as a nitrogen source.Meanwhile,PVA is utilized as the cross-linking agent.The results demonstrate that N-PGA exhibits a favorable internal 3D hierarchical porous structure and possesses robust mechanical properties.The measured specific surface area(BET)of N-PGA was as high as406.538 m^(2)·g^(-1),which was favorable for its efficient adsorption of Congo red(CR)dye molecules.At an initial concentration of 50 mg·L^(-1),N-PGA achieved an impressive removal rate of 89.6%and an adsorption capacity of 112 mg·g^(-1)for CR dye.Furthermore,it retained 79%of its initial adsorption capacity after 10 cycles,demonstrating excellent regeneration performance.In summary,the synthesized N-PGA displays remarkable efficacy in the adsorption of CR dye in wastewater,opening up new possibilities for utilizing 3D porous graphene nanomaterials as efficient adsorbents in wastewater treatment.
文摘Green synthesis of silver nanoparticles (AgNPs) using aqueous extracts of orange and lemon peels, as a reducing agent, and silver nitrate salts as a source of silver ions is a promising field of research due to the versatility of biomedical applications of metal nanoparticles. In this paper, AgNPs were synthetized at different reaction parameters such as the type and concentration of the extracts, metal salt concentration, temperature, speed stirring, and pH. The antibacterial properties of the obtained silver nanoparticles against E. coli, as well as the physical and chemical characteristics of the synthesized silver nanoparticles, were investigated. UV-Vis spectroscopy was used to confirm the formation of AgNPs. In addition to green biogenic synthesis, chemical synthesis of silver nanoparticles was also carried out. The optimal temperature for extraction was 65˚C, while for the synthesis of AgNPs was 35˚C. The synthesis is carried out in an acidic environment (pH = 4.7 orange and pH = 3.8 lemon), neutral (pH = 7) and alkaline (pH = 10), then for different concentrations of silver nitrate solution (0.5 mM - 1 mM), optimal time duration of the reaction was 60 min and optimal stirring speed rotation was 250 rpm on the magnetic stirrer. The physical properties of the synthesized silver nanoparticles (conductivity, density and refractive index) were also studied, and the passage of laser light through the obtained solution and distilled water was compared. Positive inhibitory effect on the growth of new Escherichia coli colonies have shown AgNPs synthesized at a basic pH value and at a 0.1 mM AgNO<sub>3</sub> using orange or lemon peel extract, while for a 0.5 mM AgNO<sub>3 </sub>using lemon peel extract.