Group key management is one of the basic building blocks in securing group communication.A number of solutions to group key exchange have been proposed,but most of them are not scalable and,in particular,require at le...Group key management is one of the basic building blocks in securing group communication.A number of solutions to group key exchange have been proposed,but most of them are not scalable and,in particular,require at least 0(log n) communication rounds.We formally present a constant -round Identity-based protocol with forward secrecy for group key exchange,which is provably secure in the security model introduced by Bresson et al.Our protocol focuses on round efficiency and the number of communication round is only one greater than the lower bound presented by Becker and Wille.And,the protocol provides a batch verification technique,which simultaneously verifies the validity of messages from other group participants and greatly improves computational efficiency.Moreover,in our protocol,it is no necessary of always-online key generation center during the execution of the protocol compared to other Identity-based protocols.展开更多
We present a provably secure authenticated tree based key agreement scheme for multicast. There is a wide variety of applications that can benefit from using our scheme, e. g. , pay-Tv, teleconferencing, software upda...We present a provably secure authenticated tree based key agreement scheme for multicast. There is a wide variety of applications that can benefit from using our scheme, e. g. , pay-Tv, teleconferencing, software updates. Compared with the previous published schemes, our scheme provides group member authentication without introducing additional mechanism. Future, we give the security proof of our scheme under the random oracle model.展开更多
Certificateless public key cryptography (CL-PKC) avoids the inherent escrow of identity-based cryptography and does not require certificates to guarantee the authenticity of public keys. Based on CL-PKC, we present ...Certificateless public key cryptography (CL-PKC) avoids the inherent escrow of identity-based cryptography and does not require certificates to guarantee the authenticity of public keys. Based on CL-PKC, we present an efficient constant-round group key exchange protocol, which is provably secure under the intractability of computation Diffie-Hellman problem. Our protocol is a contributory key exchange with perfect forward secrecy and has only two communication rounds. So it is more efficient than other protocols. Moreover, our protocol provides a method to design efficient constant-round group key exchange protocols and most secret sharing schemes could be adopted to construct our protocol.展开更多
The majority of existing escrowable identity-based key agreement protocols only provide partial forward secrecy. Such protocols are, arguably, not suitable for many real-word applications, as the latter tends to requi...The majority of existing escrowable identity-based key agreement protocols only provide partial forward secrecy. Such protocols are, arguably, not suitable for many real-word applications, as the latter tends to require a stronger sense of forward secrecy--perfect forward secrecy. In this paper, we propose an efficient perfect forward-secure identity-based key agreement protocol in the escrow mode. We prove the security of our protocol in the random oracle model, assuming the intractability of the Gap Bilinear Diffie-Hellman (GBDH) problem.展开更多
Recently, He et al. (Computers and Mathematics with Applications, 2012) proposed an efficient pairing-free certificateless authenticated key agreement (CL-AKA) protocol and claimed their protocol was provably secu...Recently, He et al. (Computers and Mathematics with Applications, 2012) proposed an efficient pairing-free certificateless authenticated key agreement (CL-AKA) protocol and claimed their protocol was provably secure in the extended Canetti-Krawczyk (eCK) model. By giving concrete attacks, we indicate that their protocol is not secure in the eCK model. We propose an improved protocol and show our improvement is secure in the eCK model under the gap DiffieHellman (GDH) assumption. Furthermore, the proposed protocol is very efficient.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.90204012)the National "863" High-tech Project of China(Grant No.2002AA143021)
文摘Group key management is one of the basic building blocks in securing group communication.A number of solutions to group key exchange have been proposed,but most of them are not scalable and,in particular,require at least 0(log n) communication rounds.We formally present a constant -round Identity-based protocol with forward secrecy for group key exchange,which is provably secure in the security model introduced by Bresson et al.Our protocol focuses on round efficiency and the number of communication round is only one greater than the lower bound presented by Becker and Wille.And,the protocol provides a batch verification technique,which simultaneously verifies the validity of messages from other group participants and greatly improves computational efficiency.Moreover,in our protocol,it is no necessary of always-online key generation center during the execution of the protocol compared to other Identity-based protocols.
基金Supported by the National Natural Science Foun-dation of China (90304007) the National Basic Research Programof China(973 Program2004CB318004)
文摘We present a provably secure authenticated tree based key agreement scheme for multicast. There is a wide variety of applications that can benefit from using our scheme, e. g. , pay-Tv, teleconferencing, software updates. Compared with the previous published schemes, our scheme provides group member authentication without introducing additional mechanism. Future, we give the security proof of our scheme under the random oracle model.
基金Supported by the National Natural Science Foundation of China (90204012, 60573035, 60573036) and the University IT Research Center Project of Korea
文摘Certificateless public key cryptography (CL-PKC) avoids the inherent escrow of identity-based cryptography and does not require certificates to guarantee the authenticity of public keys. Based on CL-PKC, we present an efficient constant-round group key exchange protocol, which is provably secure under the intractability of computation Diffie-Hellman problem. Our protocol is a contributory key exchange with perfect forward secrecy and has only two communication rounds. So it is more efficient than other protocols. Moreover, our protocol provides a method to design efficient constant-round group key exchange protocols and most secret sharing schemes could be adopted to construct our protocol.
基金Supported in part by the National High-Tech Research & Development Program of China (Grant No. 2006AA01Z424)the National NaturalScience Foundation of China (Grant Nos. 60673079, 60773086)the National Basic Research Program of China (Grant No. 2007CB311201)
文摘The majority of existing escrowable identity-based key agreement protocols only provide partial forward secrecy. Such protocols are, arguably, not suitable for many real-word applications, as the latter tends to require a stronger sense of forward secrecy--perfect forward secrecy. In this paper, we propose an efficient perfect forward-secure identity-based key agreement protocol in the escrow mode. We prove the security of our protocol in the random oracle model, assuming the intractability of the Gap Bilinear Diffie-Hellman (GBDH) problem.
文摘Recently, He et al. (Computers and Mathematics with Applications, 2012) proposed an efficient pairing-free certificateless authenticated key agreement (CL-AKA) protocol and claimed their protocol was provably secure in the extended Canetti-Krawczyk (eCK) model. By giving concrete attacks, we indicate that their protocol is not secure in the eCK model. We propose an improved protocol and show our improvement is secure in the eCK model under the gap DiffieHellman (GDH) assumption. Furthermore, the proposed protocol is very efficient.