A new algorithm based on genetic algorithm(GA) is developed for solving function optimization problems with inequality constraints. This algorithm has been used to a series of standard test problems and exhibited good...A new algorithm based on genetic algorithm(GA) is developed for solving function optimization problems with inequality constraints. This algorithm has been used to a series of standard test problems and exhibited good performance. The computation results show that its generality, precision, robustness, simplicity and performance are all satisfactory.展开更多
In this paper we discuss the paradigm of evolutionary algorithms (EAs). We argue about the need for new heuristics in real-world problem solving, discussing reasons why some problems are difficult to solve. After intr...In this paper we discuss the paradigm of evolutionary algorithms (EAs). We argue about the need for new heuristics in real-world problem solving, discussing reasons why some problems are difficult to solve. After introducing the main concepts of evolutionary algorithms, we concentrate on two issues: (1) self-adaptation of the parameters of EA, and (2) handling constraints.展开更多
The study and comparison of sequences of characters from a finite alphabet is relevant to various areas of science, notably molecular biology. The measurement of sequence similarity involves the consideration of the p...The study and comparison of sequences of characters from a finite alphabet is relevant to various areas of science, notably molecular biology. The measurement of sequence similarity involves the consideration of the possible sequence alignments in order to find an optimal one for which the “distance” between sequences is minimum. In biology informatics area, it is a more important and difficult problem due to the long length (100 at least) of sequence, this cause the compute complexity and large memory require. By associating a path in a lattice to each alignment, a geometric insight can be brought into the problem of finding an optimal alignment, this give an obvious encoding of each path. This problem can be solved by applying genetic algorithm, which is more efficient than dynamic programming and hidden Markov model using commomly now.展开更多
To solve the arrearage problem that puzzled most of the mobile corporations, we propose an approach to forecast and evaluate the credits for mobile clients, devising a method that is of the coalescence of genetic algo...To solve the arrearage problem that puzzled most of the mobile corporations, we propose an approach to forecast and evaluate the credits for mobile clients, devising a method that is of the coalescence of genetic algorithm and multidimensional distinguishing model. In the end of this paper, a result of a testing application in Zhuhai Branch, GMCC was provided. The precision of the forecasting and evaluation of the client’s credit is near 90%. This study is very significant to the mobile communication corporation at all levels. The popularization of the techniques and the result would produce great benefits of both society and economy.展开更多
In order to solve the problems of weak prediction stability and generalization ability of a neural network algorithm model in the yarn quality prediction research for small samples,a prediction model based on an AdaBo...In order to solve the problems of weak prediction stability and generalization ability of a neural network algorithm model in the yarn quality prediction research for small samples,a prediction model based on an AdaBoost algorithm(AdaBoost model) was established.A prediction model based on a linear regression algorithm(LR model) and a prediction model based on a multi-layer perceptron neural network algorithm(MLP model) were established for comparison.The prediction experiments of the yarn evenness and the yarn strength were implemented.Determination coefficients and prediction errors were used to evaluate the prediction accuracy of these models,and the K-fold cross validation was used to evaluate the generalization ability of these models.In the prediction experiments,the determination coefficient of the yarn evenness prediction result of the AdaBoost model is 76% and 87% higher than that of the LR model and the MLP model,respectively.The determination coefficient of the yarn strength prediction result of the AdaBoost model is slightly higher than that of the other two models.Considering that the yarn evenness dataset has a weaker linear relationship with the cotton dataset than that of the yarn strength dataset in this paper,the AdaBoost model has the best adaptability for the nonlinear dataset among the three models.In addition,the AdaBoost model shows generally better results in the cross-validation experiments and the series of prediction experiments at eight different training set sample sizes.It is proved that the AdaBoost model not only has good prediction accuracy but also has good prediction stability and generalization ability for small samples.展开更多
The purpose of this paper is to present a new general approach to solve ground-state energies of the double-electron systems in a uniform magnetic field, in which the basic element of evolution is the set in the solut...The purpose of this paper is to present a new general approach to solve ground-state energies of the double-electron systems in a uniform magnetic field, in which the basic element of evolution is the set in the solution space, rather than the point. The paper defines the Cell Evolutionary Algorithm, which implements such a view of the evolution mechanism. First, the optimal set in which the optimal solution may be obtained. Then this approach applies the embedded search method to get the optimal solution. We tested this approach on the atomic structure, and the results show that it can improve not only the efficiency but also the accuracy of the calculations as it relates to this specific problem.展开更多
A primal-dual infeasible interior point algorithm for multiple objective linear programming (MOLP) problems was presented. In contrast to the current MOLP algorithm. moving through the interior of polytope but not con...A primal-dual infeasible interior point algorithm for multiple objective linear programming (MOLP) problems was presented. In contrast to the current MOLP algorithm. moving through the interior of polytope but not confining the iterates within the feasible region in our proposed algorithm result in a solution approach that is quite different and less sensitive to problem size, so providing the potential to dramatically improve the practical computation effectiveness.展开更多
Based on analyzing the techniques and architecture of existing network Intrusion Detection System (IDS), and probing into the fundament of Immune System (IS), a novel immune model is presented and applied to network I...Based on analyzing the techniques and architecture of existing network Intrusion Detection System (IDS), and probing into the fundament of Immune System (IS), a novel immune model is presented and applied to network IDS, which is helpful to design an effective IDS. Besides, this paper suggests a scheme to represent the self profile of network. And an automated self profile extraction algorithm is provided to extract self profile from packets. The experimental results prove validity of the scheme and algorithm, which is the foundation of the immune model.展开更多
The model of EQUnn (equivalent neural network of the CAM-Brain model) is proposed. With the help of EQUnn model, it is proved that the CAM-Brain can solve the XOR problem.
Accurate descriptions of matrix diffusion across the fracture/matrix interface are critical to assessing contaminant migration in fractured media. The classical transfer probability method is only applicable for relat...Accurate descriptions of matrix diffusion across the fracture/matrix interface are critical to assessing contaminant migration in fractured media. The classical transfer probability method is only applicable for relatively large diffusion coefficients and small fracture spacings, due to an intrinsic assumption of an equilibrium concentration profile in the matrix blocks. Motivated and required by practical applications, we propose a direct numerical simulation (DNS) approach without any empirical assumptions. A three-step Lagrangian algorithm was developed and validated to directly track the particle dynamics across the fracture/matrix interface, where particle's diffusive displacement across the discontinuity is controlled by an analytical, one-side reflection probability. Numerical experiments show that the DNS approach is especially efficient for small diffusion coefficients and large fracture spacings, alleviating limitations of the classical modeling approach.展开更多
文摘A new algorithm based on genetic algorithm(GA) is developed for solving function optimization problems with inequality constraints. This algorithm has been used to a series of standard test problems and exhibited good performance. The computation results show that its generality, precision, robustness, simplicity and performance are all satisfactory.
文摘In this paper we discuss the paradigm of evolutionary algorithms (EAs). We argue about the need for new heuristics in real-world problem solving, discussing reasons why some problems are difficult to solve. After introducing the main concepts of evolutionary algorithms, we concentrate on two issues: (1) self-adaptation of the parameters of EA, and (2) handling constraints.
文摘The study and comparison of sequences of characters from a finite alphabet is relevant to various areas of science, notably molecular biology. The measurement of sequence similarity involves the consideration of the possible sequence alignments in order to find an optimal one for which the “distance” between sequences is minimum. In biology informatics area, it is a more important and difficult problem due to the long length (100 at least) of sequence, this cause the compute complexity and large memory require. By associating a path in a lattice to each alignment, a geometric insight can be brought into the problem of finding an optimal alignment, this give an obvious encoding of each path. This problem can be solved by applying genetic algorithm, which is more efficient than dynamic programming and hidden Markov model using commomly now.
基金Guangdong Mobile Communication Company Limited Key Item(2001 and 2002)
文摘To solve the arrearage problem that puzzled most of the mobile corporations, we propose an approach to forecast and evaluate the credits for mobile clients, devising a method that is of the coalescence of genetic algorithm and multidimensional distinguishing model. In the end of this paper, a result of a testing application in Zhuhai Branch, GMCC was provided. The precision of the forecasting and evaluation of the client’s credit is near 90%. This study is very significant to the mobile communication corporation at all levels. The popularization of the techniques and the result would produce great benefits of both society and economy.
文摘In order to solve the problems of weak prediction stability and generalization ability of a neural network algorithm model in the yarn quality prediction research for small samples,a prediction model based on an AdaBoost algorithm(AdaBoost model) was established.A prediction model based on a linear regression algorithm(LR model) and a prediction model based on a multi-layer perceptron neural network algorithm(MLP model) were established for comparison.The prediction experiments of the yarn evenness and the yarn strength were implemented.Determination coefficients and prediction errors were used to evaluate the prediction accuracy of these models,and the K-fold cross validation was used to evaluate the generalization ability of these models.In the prediction experiments,the determination coefficient of the yarn evenness prediction result of the AdaBoost model is 76% and 87% higher than that of the LR model and the MLP model,respectively.The determination coefficient of the yarn strength prediction result of the AdaBoost model is slightly higher than that of the other two models.Considering that the yarn evenness dataset has a weaker linear relationship with the cotton dataset than that of the yarn strength dataset in this paper,the AdaBoost model has the best adaptability for the nonlinear dataset among the three models.In addition,the AdaBoost model shows generally better results in the cross-validation experiments and the series of prediction experiments at eight different training set sample sizes.It is proved that the AdaBoost model not only has good prediction accuracy but also has good prediction stability and generalization ability for small samples.
基金Supported by the opening Foundation of state key Laboratory of Magnetic Resonance and Atomic and Molecularphysics, Wuhan Insti
文摘The purpose of this paper is to present a new general approach to solve ground-state energies of the double-electron systems in a uniform magnetic field, in which the basic element of evolution is the set in the solution space, rather than the point. The paper defines the Cell Evolutionary Algorithm, which implements such a view of the evolution mechanism. First, the optimal set in which the optimal solution may be obtained. Then this approach applies the embedded search method to get the optimal solution. We tested this approach on the atomic structure, and the results show that it can improve not only the efficiency but also the accuracy of the calculations as it relates to this specific problem.
基金Supported by the Doctoral Educational Foundation of China of the Ministry of Education(20020486035)
文摘A primal-dual infeasible interior point algorithm for multiple objective linear programming (MOLP) problems was presented. In contrast to the current MOLP algorithm. moving through the interior of polytope but not confining the iterates within the feasible region in our proposed algorithm result in a solution approach that is quite different and less sensitive to problem size, so providing the potential to dramatically improve the practical computation effectiveness.
基金the National Natural Science Foundation of China(69983005)and the Research Fund for the Doctoral Program of Higher Education(RFDP1999048602)
文摘Based on analyzing the techniques and architecture of existing network Intrusion Detection System (IDS), and probing into the fundament of Immune System (IS), a novel immune model is presented and applied to network IDS, which is helpful to design an effective IDS. Besides, this paper suggests a scheme to represent the self profile of network. And an automated self profile extraction algorithm is provided to extract self profile from packets. The experimental results prove validity of the scheme and algorithm, which is the foundation of the immune model.
文摘The model of EQUnn (equivalent neural network of the CAM-Brain model) is proposed. With the help of EQUnn model, it is proved that the CAM-Brain can solve the XOR problem.
基金supported by the United States Department of Energythe Desert Research Institute IR&D Funds
文摘Accurate descriptions of matrix diffusion across the fracture/matrix interface are critical to assessing contaminant migration in fractured media. The classical transfer probability method is only applicable for relatively large diffusion coefficients and small fracture spacings, due to an intrinsic assumption of an equilibrium concentration profile in the matrix blocks. Motivated and required by practical applications, we propose a direct numerical simulation (DNS) approach without any empirical assumptions. A three-step Lagrangian algorithm was developed and validated to directly track the particle dynamics across the fracture/matrix interface, where particle's diffusive displacement across the discontinuity is controlled by an analytical, one-side reflection probability. Numerical experiments show that the DNS approach is especially efficient for small diffusion coefficients and large fracture spacings, alleviating limitations of the classical modeling approach.