In this paper we study shadowing property for sequences of mappings on compact metric spaces, i.e., nonautonomous discrete dynamical systems. We investi- gate the relations of various expansivity properties with shado...In this paper we study shadowing property for sequences of mappings on compact metric spaces, i.e., nonautonomous discrete dynamical systems. We investi- gate the relations of various expansivity properties with shadowing and h-shadowing property.展开更多
Nonlinear solution of reinforced concrete structures, particularly complete load-deflection response, requires tracing of the equilibrium path and proper treatment of the limit and bifurcation points. In this regard, ...Nonlinear solution of reinforced concrete structures, particularly complete load-deflection response, requires tracing of the equilibrium path and proper treatment of the limit and bifurcation points. In this regard, ordinary solution techniques lead to instability near the limit points and also have problems in case of snap-through and snap-back. Thus they fail to predict the complete load-displacement response. The arc-length method serves the purpose well in principle, received wide acceptance in finite element analysis, and has been used extensively. However modifications to the basic idea are vital to meet the particular needs of the analysis. This paper reviews some of the recent developments of the method in the last two decades, with particular emphasis on nonlinear finite element analysis of reinforced concrete structures.展开更多
文摘In this paper we study shadowing property for sequences of mappings on compact metric spaces, i.e., nonautonomous discrete dynamical systems. We investi- gate the relations of various expansivity properties with shadowing and h-shadowing property.
文摘Nonlinear solution of reinforced concrete structures, particularly complete load-deflection response, requires tracing of the equilibrium path and proper treatment of the limit and bifurcation points. In this regard, ordinary solution techniques lead to instability near the limit points and also have problems in case of snap-through and snap-back. Thus they fail to predict the complete load-displacement response. The arc-length method serves the purpose well in principle, received wide acceptance in finite element analysis, and has been used extensively. However modifications to the basic idea are vital to meet the particular needs of the analysis. This paper reviews some of the recent developments of the method in the last two decades, with particular emphasis on nonlinear finite element analysis of reinforced concrete structures.