In order to solve the problems of weak prediction stability and generalization ability of a neural network algorithm model in the yarn quality prediction research for small samples,a prediction model based on an AdaBo...In order to solve the problems of weak prediction stability and generalization ability of a neural network algorithm model in the yarn quality prediction research for small samples,a prediction model based on an AdaBoost algorithm(AdaBoost model) was established.A prediction model based on a linear regression algorithm(LR model) and a prediction model based on a multi-layer perceptron neural network algorithm(MLP model) were established for comparison.The prediction experiments of the yarn evenness and the yarn strength were implemented.Determination coefficients and prediction errors were used to evaluate the prediction accuracy of these models,and the K-fold cross validation was used to evaluate the generalization ability of these models.In the prediction experiments,the determination coefficient of the yarn evenness prediction result of the AdaBoost model is 76% and 87% higher than that of the LR model and the MLP model,respectively.The determination coefficient of the yarn strength prediction result of the AdaBoost model is slightly higher than that of the other two models.Considering that the yarn evenness dataset has a weaker linear relationship with the cotton dataset than that of the yarn strength dataset in this paper,the AdaBoost model has the best adaptability for the nonlinear dataset among the three models.In addition,the AdaBoost model shows generally better results in the cross-validation experiments and the series of prediction experiments at eight different training set sample sizes.It is proved that the AdaBoost model not only has good prediction accuracy but also has good prediction stability and generalization ability for small samples.展开更多
For natural water, method of water quality evaluation based on improved fuzzy matter-element evaluation method is presented. Two important parts are improved, the weights determining and fuzzy membership functions. Th...For natural water, method of water quality evaluation based on improved fuzzy matter-element evaluation method is presented. Two important parts are improved, the weights determining and fuzzy membership functions. The coefficient of variation of each indicator is used to determine the weight instead of traditional calculating superscales method. On the other hand, fuzzy matter-elements are constructed, and normal membership degrees are used instead of traditional trapezoidal ones. The composite fuzzy matter-elements with associated coefficient are constructed through associated transformation. The levels of natural water quality are determined according to the principle of maximum correlation. The improved fuzzy matter-element evaluation method is applied to evaluate water quality of the Luokou mainstream estuary at the first ten weeks in 2011 with the coefficient of variatiola method determining the weights. Water quality of Luokou mainstream estuary is dropping from level I to level II. The results of the improved evaluation method are basically the same as the official water quality. The variation coefficient method can reduce the workload, and overcome the adverse effects from abnormal values, compared with the traditional calculating superscales method. The results of improved fuzzy matter- element evaluation method are more credible than the ones of the traditional evaluation method. The improved evaluation method can use information of monitoring data more scientifically and comprehensively, and broaden a new evaluation method for water quality assessment.展开更多
This study adds to the understanding of China "s innovation prospects by examining how variations in institutional quality within China impact on the R &D efforts of firms located in different provincial regions. In...This study adds to the understanding of China "s innovation prospects by examining how variations in institutional quality within China impact on the R &D efforts of firms located in different provincial regions. In the process of identifying the effect of institutional quality, the roles of other factors such as ownership types and market structures are revealed, which provides interesting insight into firms " R&D behavior. The key findings suggest that institutional quality positively affects the decision offirms to engage in R&D activities. Once firms start to engage in R &D, the subsequent expansion of firm-level R &D intensity depends on factors such as market structure. Therefore, strengthening domestic institutional quality is the first critical step towards the goal of building a knowledge-intensive economy in China. Efforts to nurture market development are also important for achieving this goal.展开更多
Sampling plays an important role in acquiring precise soil information required in modern agricultural production worldwide, which determines both the cost and quality of final soil mapping products. For sampling desi...Sampling plays an important role in acquiring precise soil information required in modern agricultural production worldwide, which determines both the cost and quality of final soil mapping products. For sampling design, it has been proposed possibile to transfer the relationships between kriging variance and sampling grid spacing from an area with existing information to other areas with similar soil-forming environments. However, this approach is challenged in practice because of two problems: i) different population vaxiograms among similar areas and ii) sampling errors in estimated variograms. This study evaluated the effects of these two problems on the transferability of the relationships between kriging variance and sampling grid spacing, by using spatial data simulated with three variograms and soil samples collected from four grasslands in Ireland with similar soil-forming environments. Results showed that the variograms suggested by different samples collected with the same grid spacing in the same or similar areas were different, leading to a range of mean kriging variance (MKV) for each grid spacing. With increasing grid spacing, the variation of MKV for a specific grid spacing increased and deviated more from the MKV generated using the population variograms. As a result, the spatial transferability of the relationships between kriging variance and grid spacing for sampling design was limited.展开更多
文摘In order to solve the problems of weak prediction stability and generalization ability of a neural network algorithm model in the yarn quality prediction research for small samples,a prediction model based on an AdaBoost algorithm(AdaBoost model) was established.A prediction model based on a linear regression algorithm(LR model) and a prediction model based on a multi-layer perceptron neural network algorithm(MLP model) were established for comparison.The prediction experiments of the yarn evenness and the yarn strength were implemented.Determination coefficients and prediction errors were used to evaluate the prediction accuracy of these models,and the K-fold cross validation was used to evaluate the generalization ability of these models.In the prediction experiments,the determination coefficient of the yarn evenness prediction result of the AdaBoost model is 76% and 87% higher than that of the LR model and the MLP model,respectively.The determination coefficient of the yarn strength prediction result of the AdaBoost model is slightly higher than that of the other two models.Considering that the yarn evenness dataset has a weaker linear relationship with the cotton dataset than that of the yarn strength dataset in this paper,the AdaBoost model has the best adaptability for the nonlinear dataset among the three models.In addition,the AdaBoost model shows generally better results in the cross-validation experiments and the series of prediction experiments at eight different training set sample sizes.It is proved that the AdaBoost model not only has good prediction accuracy but also has good prediction stability and generalization ability for small samples.
基金supported by the National Natural Science Foundation of China (No. 41071322, 71031001)
文摘For natural water, method of water quality evaluation based on improved fuzzy matter-element evaluation method is presented. Two important parts are improved, the weights determining and fuzzy membership functions. The coefficient of variation of each indicator is used to determine the weight instead of traditional calculating superscales method. On the other hand, fuzzy matter-elements are constructed, and normal membership degrees are used instead of traditional trapezoidal ones. The composite fuzzy matter-elements with associated coefficient are constructed through associated transformation. The levels of natural water quality are determined according to the principle of maximum correlation. The improved fuzzy matter-element evaluation method is applied to evaluate water quality of the Luokou mainstream estuary at the first ten weeks in 2011 with the coefficient of variatiola method determining the weights. Water quality of Luokou mainstream estuary is dropping from level I to level II. The results of the improved evaluation method are basically the same as the official water quality. The variation coefficient method can reduce the workload, and overcome the adverse effects from abnormal values, compared with the traditional calculating superscales method. The results of improved fuzzy matter- element evaluation method are more credible than the ones of the traditional evaluation method. The improved evaluation method can use information of monitoring data more scientifically and comprehensively, and broaden a new evaluation method for water quality assessment.
基金financial support from the Rio Tinto-ANU China Partnership for my graduate work at the Australian National University is gratefully acknowledged
文摘This study adds to the understanding of China "s innovation prospects by examining how variations in institutional quality within China impact on the R &D efforts of firms located in different provincial regions. In the process of identifying the effect of institutional quality, the roles of other factors such as ownership types and market structures are revealed, which provides interesting insight into firms " R&D behavior. The key findings suggest that institutional quality positively affects the decision offirms to engage in R&D activities. Once firms start to engage in R &D, the subsequent expansion of firm-level R &D intensity depends on factors such as market structure. Therefore, strengthening domestic institutional quality is the first critical step towards the goal of building a knowledge-intensive economy in China. Efforts to nurture market development are also important for achieving this goal.
基金?nancially supported by the National Natural Science Foundation of China (Nos. 41541006 and 41771246)co-funded by Enterprise Ireland and the European Regional Development Fund (ERDF) under the National Strategic Reference Framework (NSRF) 2007–2013
文摘Sampling plays an important role in acquiring precise soil information required in modern agricultural production worldwide, which determines both the cost and quality of final soil mapping products. For sampling design, it has been proposed possibile to transfer the relationships between kriging variance and sampling grid spacing from an area with existing information to other areas with similar soil-forming environments. However, this approach is challenged in practice because of two problems: i) different population vaxiograms among similar areas and ii) sampling errors in estimated variograms. This study evaluated the effects of these two problems on the transferability of the relationships between kriging variance and sampling grid spacing, by using spatial data simulated with three variograms and soil samples collected from four grasslands in Ireland with similar soil-forming environments. Results showed that the variograms suggested by different samples collected with the same grid spacing in the same or similar areas were different, leading to a range of mean kriging variance (MKV) for each grid spacing. With increasing grid spacing, the variation of MKV for a specific grid spacing increased and deviated more from the MKV generated using the population variograms. As a result, the spatial transferability of the relationships between kriging variance and grid spacing for sampling design was limited.