NoSQL系统因其高性能、高可扩展性的优势在大数据管理中得到广泛应用,而key-value(KV)模型则是NoSQL系统中使用最广泛的一种存储模型.KV型本地存储系统对于以机械磁盘为持久化存储的情形,存在许多性能优化技术,但这些优化技术面对当前...NoSQL系统因其高性能、高可扩展性的优势在大数据管理中得到广泛应用,而key-value(KV)模型则是NoSQL系统中使用最广泛的一种存储模型.KV型本地存储系统对于以机械磁盘为持久化存储的情形,存在许多性能优化技术,但这些优化技术面对当前的硬件发展新趋势,如多核处理器、大内存和低延迟闪存、非易失性内存NVM(Non-Volatile Memory)等,难以充分发挥新硬件的优势,如数据索引、并发控制、事务日志管理等技术在多核架构下存在多核扩展性问题,又如数据存储策略不适应闪存SSD(Solid State Drive)的新存储特性而产生了IO利用率低效的问题.针对多核处理器、大内存和闪存、NVM等硬件发展新趋势,文中面向当前的大数据应用背景,综述了KV型本地存储系统在索引技术、并发控制、事务日志管理和数据放置等核心模块上的最新优化技术和系统研究成果.从处理器、内存和持久化存储的角度概括了KV型本地存储系统当前存在的最优技术,总结了当前研究尚未解决的技术挑战,并对KV型本地存储系统在CPU缓存高效性、事务日志扩展性和高可用性等方面的研究进行了展望.展开更多
In recent years,the research field of data collection under local differential privacy(LDP)has expanded its focus fromelementary data types to includemore complex structural data,such as set-value and graph data.Howev...In recent years,the research field of data collection under local differential privacy(LDP)has expanded its focus fromelementary data types to includemore complex structural data,such as set-value and graph data.However,our comprehensive review of existing literature reveals that there needs to be more studies that engage with key-value data collection.Such studies would simultaneously collect the frequencies of keys and the mean of values associated with each key.Additionally,the allocation of the privacy budget between the frequencies of keys and the means of values for each key does not yield an optimal utility tradeoff.Recognizing the importance of obtaining accurate key frequencies and mean estimations for key-value data collection,this paper presents a novel framework:the Key-Strategy Framework forKey-ValueDataCollection under LDP.Initially,theKey-StrategyUnary Encoding(KS-UE)strategy is proposed within non-interactive frameworks for the purpose of privacy budget allocation to achieve precise key frequencies;subsequently,the Key-Strategy Generalized Randomized Response(KS-GRR)strategy is introduced for interactive frameworks to enhance the efficiency of collecting frequent keys through group-anditeration methods.Both strategies are adapted for scenarios in which users possess either a single or multiple key-value pairs.Theoretically,we demonstrate that the variance of KS-UE is lower than that of existing methods.These claims are substantiated through extensive experimental evaluation on real-world datasets,confirming the effectiveness and efficiency of the KS-UE and KS-GRR strategies.展开更多
随着互联网技术的迅猛发展,越来越多的非结构化数据涌入到人们的生活中,为这些数据建立高效的索引面临极大的挑战.键值数据库Key-Value以其结构简单和高扩展性而引起人们的广泛关注,已成为海量数据存储系统中的重要组成部分.由于Key-Va...随着互联网技术的迅猛发展,越来越多的非结构化数据涌入到人们的生活中,为这些数据建立高效的索引面临极大的挑战.键值数据库Key-Value以其结构简单和高扩展性而引起人们的广泛关注,已成为海量数据存储系统中的重要组成部分.由于Key-Value系统对吞吐量要求较高,而基于Flash的固态硬盘(solid state drive,SSD)能够提供很高的随机读性能,在SSD上构建Key-Value系统已成为海量数据存储领域的一大研究热点.鉴于Flash具有非定点更新、寿命有限等特性,基于SSD的KeyValue系统必须针对Flash的特性作专门优化.以一种称为SkimpyStash的基于SSD的Key-Value系统为基础,提出了一种新的Key-Value系统低延迟存储系统(low latency store,LLStore).LLStore使用内存文件映射技术来减少针对SSD的IO请求,除此之外,针对SkimpyStash中低效的压缩策略,提出一种改进方法,可以在少量增加内存开销的情况下极大地减少查询时间.通过与原系统的性能比较实验,LLStore在平均查询时间上可以获得至少12%的加速.展开更多
文摘NoSQL系统因其高性能、高可扩展性的优势在大数据管理中得到广泛应用,而key-value(KV)模型则是NoSQL系统中使用最广泛的一种存储模型.KV型本地存储系统对于以机械磁盘为持久化存储的情形,存在许多性能优化技术,但这些优化技术面对当前的硬件发展新趋势,如多核处理器、大内存和低延迟闪存、非易失性内存NVM(Non-Volatile Memory)等,难以充分发挥新硬件的优势,如数据索引、并发控制、事务日志管理等技术在多核架构下存在多核扩展性问题,又如数据存储策略不适应闪存SSD(Solid State Drive)的新存储特性而产生了IO利用率低效的问题.针对多核处理器、大内存和闪存、NVM等硬件发展新趋势,文中面向当前的大数据应用背景,综述了KV型本地存储系统在索引技术、并发控制、事务日志管理和数据放置等核心模块上的最新优化技术和系统研究成果.从处理器、内存和持久化存储的角度概括了KV型本地存储系统当前存在的最优技术,总结了当前研究尚未解决的技术挑战,并对KV型本地存储系统在CPU缓存高效性、事务日志扩展性和高可用性等方面的研究进行了展望.
基金supported by a grant fromthe National Key R&DProgram of China.
文摘In recent years,the research field of data collection under local differential privacy(LDP)has expanded its focus fromelementary data types to includemore complex structural data,such as set-value and graph data.However,our comprehensive review of existing literature reveals that there needs to be more studies that engage with key-value data collection.Such studies would simultaneously collect the frequencies of keys and the mean of values associated with each key.Additionally,the allocation of the privacy budget between the frequencies of keys and the means of values for each key does not yield an optimal utility tradeoff.Recognizing the importance of obtaining accurate key frequencies and mean estimations for key-value data collection,this paper presents a novel framework:the Key-Strategy Framework forKey-ValueDataCollection under LDP.Initially,theKey-StrategyUnary Encoding(KS-UE)strategy is proposed within non-interactive frameworks for the purpose of privacy budget allocation to achieve precise key frequencies;subsequently,the Key-Strategy Generalized Randomized Response(KS-GRR)strategy is introduced for interactive frameworks to enhance the efficiency of collecting frequent keys through group-anditeration methods.Both strategies are adapted for scenarios in which users possess either a single or multiple key-value pairs.Theoretically,we demonstrate that the variance of KS-UE is lower than that of existing methods.These claims are substantiated through extensive experimental evaluation on real-world datasets,confirming the effectiveness and efficiency of the KS-UE and KS-GRR strategies.
文摘随着互联网技术的迅猛发展,越来越多的非结构化数据涌入到人们的生活中,为这些数据建立高效的索引面临极大的挑战.键值数据库Key-Value以其结构简单和高扩展性而引起人们的广泛关注,已成为海量数据存储系统中的重要组成部分.由于Key-Value系统对吞吐量要求较高,而基于Flash的固态硬盘(solid state drive,SSD)能够提供很高的随机读性能,在SSD上构建Key-Value系统已成为海量数据存储领域的一大研究热点.鉴于Flash具有非定点更新、寿命有限等特性,基于SSD的KeyValue系统必须针对Flash的特性作专门优化.以一种称为SkimpyStash的基于SSD的Key-Value系统为基础,提出了一种新的Key-Value系统低延迟存储系统(low latency store,LLStore).LLStore使用内存文件映射技术来减少针对SSD的IO请求,除此之外,针对SkimpyStash中低效的压缩策略,提出一种改进方法,可以在少量增加内存开销的情况下极大地减少查询时间.通过与原系统的性能比较实验,LLStore在平均查询时间上可以获得至少12%的加速.