期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进KeyPointNet网络的特征点检测和描述
1
作者 孙伍虹志 《长江信息通信》 2024年第8期31-33,共3页
传统手工设计的特征提取方法如SIFT、ORB等,在光照或视角变化等挑战性场景中特征提取鲁棒性、精度都不如基于深度学习的特征点检测网络。启发于KeyPointNet网络在图像特征提取任务中表现的鲁棒性,文章利用轻量化网络设计KeyPointNet改... 传统手工设计的特征提取方法如SIFT、ORB等,在光照或视角变化等挑战性场景中特征提取鲁棒性、精度都不如基于深度学习的特征点检测网络。启发于KeyPointNet网络在图像特征提取任务中表现的鲁棒性,文章利用轻量化网络设计KeyPointNet改进模型,旨在使其满足一定精度的情况下,在资源受限的平台上实时运行。实验结果表明,改进后的KeyPointNet在HPatches数据集上,重复性与单应性精度都优于原KeyPointNet模型,并且改进后的网络模型参数量大约压缩了88.83%,浮点运算次数减少了约86.62%,更适合部署在实际场景中。 展开更多
关键词 深度学习 图像特征提取 轻量化网络 keypointnet网络
下载PDF
基于关键点检测的红外弱小目标检测 被引量:2
2
作者 王强 吴乐天 +2 位作者 王勇 王欢 杨万扣 《航空学报》 EI CAS CSCD 北大核心 2023年第10期284-294,共11页
红外弱小目标检测旨在从复杂的背景中检测出红外弱小目标,该技术在监视预警系统、精确制导等方面具有重要应用价值。针对已有的传统算法存在漏检、误检,深度学习中基于语义分割的检测方法易受“过分割”与“欠分割”影响等问题,提出了... 红外弱小目标检测旨在从复杂的背景中检测出红外弱小目标,该技术在监视预警系统、精确制导等方面具有重要应用价值。针对已有的传统算法存在漏检、误检,深度学习中基于语义分割的检测方法易受“过分割”与“欠分割”影响等问题,提出了一种基于关键点检测的红外弱小目标检测算法(KeypointNet)。主要创新点为:直接优化目标中心点坐标,提高了检测效率,有效地保证了目标的检测率与虚警率;设计了一种从低层级到高层级的特征融合模块,获取了目标的多尺度信息,提升了检测效果。在相关数据集上的实验表明:KeypointNet算法的检测率能够达到97.58%,同时虚警率在2%以下,与其他算法相比取得了最好的效果。 展开更多
关键词 红外弱小目标检测 关键点检测 深度学习 keypointnet 图像处理
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部