The influence of the longitudinal acceleration and the angular acceleration of detecting target based on vortex electromagnetic waves in keyhole space are analyzed.The spectrum spreads of different orbital angular mom...The influence of the longitudinal acceleration and the angular acceleration of detecting target based on vortex electromagnetic waves in keyhole space are analyzed.The spectrum spreads of different orbital angular momentum(OAM)modes in different non-line-of-sight situations are simulated.The errors of target accelerations in detection are calculated and compared based on the OAM spectra spreading by using two combinations of composite OAM modes in the keyhole space.According to the research,the effects about spectrum spreads of higher OAM modes are more obvious.The error in detection is mainly affected by OAM spectrum spreading,which can be reduced by reasonably using different combinations of OAM modes in different practical situations.The above results provide a reference idea for investigating keyhole effect when vortex electromagnetic wave is used to detect accelerations.展开更多
In order to obtain good welding quality, it is necessary to apply quality control because there are many influencing factors in laser welding process. The key to realize welding quality control is to obtain the qualit...In order to obtain good welding quality, it is necessary to apply quality control because there are many influencing factors in laser welding process. The key to realize welding quality control is to obtain the quality information. Abundant weld quality information is contained in weld pool and keyhole. Aiming at Nd:YAG laser welding of stainless steel, a coaxial visual sensing system was constructed. The images of weld pool and keyhole were obtained. Based on the gray character of weld pool and keyhole in images, an image processing algorithm was designed. The search start point and search criteria of weld pool and keyhole edge were determined respectively.展开更多
The establishment and maintenance of a stable keyhole during plasma arc welding process is of critical importance. Spectroscopic study on the relationship between the keyhole and arc light radiation intensity is pursu...The establishment and maintenance of a stable keyhole during plasma arc welding process is of critical importance. Spectroscopic study on the relationship between the keyhole and arc light radiation intensity is pursued in plasma arc welding of stainless steel. It is found that there are salient changes similar to negative pulse in arc light radiant intensity signal with the characteristic changes of the keyhole. In addition, the above signal, which is of particular advantage for estimating the keyhole formation or closure, can be improved by means of detecting sensitive spectral line intensity.展开更多
An adaptive heat source mode is proposed to account for the keyhole effect and the characteristics of volumetric distribution along the direction of the workpiece thickness. Finite element analysis of the temperature ...An adaptive heat source mode is proposed to account for the keyhole effect and the characteristics of volumetric distribution along the direction of the workpiece thickness. Finite element analysis of the temperature field in keyhole plasma arc welding is conducted and the weld geometry is obtained. The predicted results are in agreement with the measured ones.展开更多
The plasma arc pressure plays an important role in determining the keyhole formation and size. So it is of great significance to choose adaptive distribution mode of the plasma arc pressure for determining keyhole sha...The plasma arc pressure plays an important role in determining the keyhole formation and size. So it is of great significance to choose adaptive distribution mode of the plasma arc pressure for determining keyhole shape and size. In this study, through employing a double-elliptic distribution mode of plasma arc pressure, three-dimensional keyhole was numerically simulated. The unsymmetric feature of the keyhole inside the weld pool was described. The development of keyhole was demonstrated under different levels of welding current. The critical current required to form an open keyhole was obtained for the study cases .展开更多
In this paper, a high-speed camera and an optical emission monitor were used to study the behavior of vapor/ plasma during CO2 laser welding of SUS304 stainless steel. Results of optical emission from vapor/plasma sho...In this paper, a high-speed camera and an optical emission monitor were used to study the behavior of vapor/ plasma during CO2 laser welding of SUS304 stainless steel. Results of optical emission from vapor/plasma show that two characteristic frequency bands exist, 100 -500 Hz and 1 500 -3 500 Hz. At the same time, the changing images of vapor/ plasma and bottom pool also confirm that there are two different fluctuation frequency bands. One of the frequency bands represents the characteristic of vapor/plasma within the keyhole, and it is within 167 -500 Hz. Another frequency band is within 1 500 - 3 500 Hz, and it obviously derives from the shielding gas. Some factors may cause these frequency differences between the keyhole plasma and the shielding gas plasma. One of them is that the vapor/plasma pressure within the keyhole will increase slowly.展开更多
It is of great significance to model the keyhole shape and dimensions to optimize the plasma arc welding process parameters. In this study, through employing a combined volumetric heat source mode, the weld pool in ke...It is of great significance to model the keyhole shape and dimensions to optimize the plasma arc welding process parameters. In this study, through employing a combined volumetric heat source mode, the weld pool in keyhole plasma arc welding is determined firstly, and then the dynamic force-balance condition on the interface between the plasma jet and the molten metal is dealt with in describing the keyhole formation inside the weld pool. The effects of welding current on the shape and size of keyhole are numerically analyzed. The sharp transformation from a partial keyhole to a full-penetration keyhole is quantitatively demonstrated.展开更多
In the double-sided arc welding system (DSAW) composing of PAW+TIG arcs, the PAW arc is guided by the TIG arc so that the current mostly flows through the direction of the workpiece thickness and the penetration is gr...In the double-sided arc welding system (DSAW) composing of PAW+TIG arcs, the PAW arc is guided by the TIG arc so that the current mostly flows through the direction of the workpiece thickness and the penetration is greatly improved. To analyze the current density distribution in DSAW is beneficial to understanding of this process. Considering all kinds of dynamic factors acting on the weldpool, this paper discusses firstly the surface deformation of the weldpool and the keyhole formation in PAW+TIG DSAW process on the basis of the magnetohydrodynamic theory and variation principles. Hence, a model of the current density distribution is developed. Through numerical simulation, the current density distribution in PAW+TIG DSAW process is quantitatively analyzed. It shows that the minimal radius of keyhole formed in PAW+TIG DSAW process is 0.5 mm and 89.5 percent of current flows through the keyhole.展开更多
A new kind of control system for keyhole plasma arc welding (K-PAW) was developed based on the computer and the Graphics Language--LabVIEW. It can set and output the required current waveforms with desired decreasin...A new kind of control system for keyhole plasma arc welding (K-PAW) was developed based on the computer and the Graphics Language--LabVIEW. It can set and output the required current waveforms with desired decreasing slopes so that the corresponding "opening and closing" of keyhole can occur periodically. With this control strategy of welding current waveforms, the workpiece is fully penetrated while no burn-through Occurs. Keyhole plasma arc welding experiments were conducted to verify the stability and reliability of the developed system.展开更多
Keyhole plasma arc welding experiments are conducted to measure the weld geometry and penetration at different moments during the initial phase from igniting arc to quasi-steady state. Indirect information on keyhole ...Keyhole plasma arc welding experiments are conducted to measure the weld geometry and penetration at different moments during the initial phase from igniting arc to quasi-steady state. Indirect information on keyhole formation and evolution in plasma arc welding can be extracted based on the weld macrophotograph at cross section. It has laid foundation to verify the mathematical models of keyhole plasma arc welding.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11804073 and 61775050).
文摘The influence of the longitudinal acceleration and the angular acceleration of detecting target based on vortex electromagnetic waves in keyhole space are analyzed.The spectrum spreads of different orbital angular momentum(OAM)modes in different non-line-of-sight situations are simulated.The errors of target accelerations in detection are calculated and compared based on the OAM spectra spreading by using two combinations of composite OAM modes in the keyhole space.According to the research,the effects about spectrum spreads of higher OAM modes are more obvious.The error in detection is mainly affected by OAM spectrum spreading,which can be reduced by reasonably using different combinations of OAM modes in different practical situations.The above results provide a reference idea for investigating keyhole effect when vortex electromagnetic wave is used to detect accelerations.
基金Project (10776020) supported by the Joint Foundation of the National Natural Science Foundation of China and China Academy of Engineering Physics
文摘In order to obtain good welding quality, it is necessary to apply quality control because there are many influencing factors in laser welding process. The key to realize welding quality control is to obtain the quality information. Abundant weld quality information is contained in weld pool and keyhole. Aiming at Nd:YAG laser welding of stainless steel, a coaxial visual sensing system was constructed. The images of weld pool and keyhole were obtained. Based on the gray character of weld pool and keyhole in images, an image processing algorithm was designed. The search start point and search criteria of weld pool and keyhole edge were determined respectively.
文摘The establishment and maintenance of a stable keyhole during plasma arc welding process is of critical importance. Spectroscopic study on the relationship between the keyhole and arc light radiation intensity is pursued in plasma arc welding of stainless steel. It is found that there are salient changes similar to negative pulse in arc light radiant intensity signal with the characteristic changes of the keyhole. In addition, the above signal, which is of particular advantage for estimating the keyhole formation or closure, can be improved by means of detecting sensitive spectral line intensity.
文摘An adaptive heat source mode is proposed to account for the keyhole effect and the characteristics of volumetric distribution along the direction of the workpiece thickness. Finite element analysis of the temperature field in keyhole plasma arc welding is conducted and the weld geometry is obtained. The predicted results are in agreement with the measured ones.
基金Acknowledgement The authors are grateful to the financial support for this project from the National Natural Science Foundation of China under grant No. 50540420570.
文摘The plasma arc pressure plays an important role in determining the keyhole formation and size. So it is of great significance to choose adaptive distribution mode of the plasma arc pressure for determining keyhole shape and size. In this study, through employing a double-elliptic distribution mode of plasma arc pressure, three-dimensional keyhole was numerically simulated. The unsymmetric feature of the keyhole inside the weld pool was described. The development of keyhole was demonstrated under different levels of welding current. The critical current required to form an open keyhole was obtained for the study cases .
文摘In this paper, a high-speed camera and an optical emission monitor were used to study the behavior of vapor/ plasma during CO2 laser welding of SUS304 stainless steel. Results of optical emission from vapor/plasma show that two characteristic frequency bands exist, 100 -500 Hz and 1 500 -3 500 Hz. At the same time, the changing images of vapor/ plasma and bottom pool also confirm that there are two different fluctuation frequency bands. One of the frequency bands represents the characteristic of vapor/plasma within the keyhole, and it is within 167 -500 Hz. Another frequency band is within 1 500 - 3 500 Hz, and it obviously derives from the shielding gas. Some factors may cause these frequency differences between the keyhole plasma and the shielding gas plasma. One of them is that the vapor/plasma pressure within the keyhole will increase slowly.
文摘It is of great significance to model the keyhole shape and dimensions to optimize the plasma arc welding process parameters. In this study, through employing a combined volumetric heat source mode, the weld pool in keyhole plasma arc welding is determined firstly, and then the dynamic force-balance condition on the interface between the plasma jet and the molten metal is dealt with in describing the keyhole formation inside the weld pool. The effects of welding current on the shape and size of keyhole are numerically analyzed. The sharp transformation from a partial keyhole to a full-penetration keyhole is quantitatively demonstrated.
基金The authors wish to express their gratitude to the financial support to this project from the project foundation of the National Key Laboratory of Advanced Welding Production Technology of Harbin Institute of Technology and the US National Science Foundation under grant No.DMI 9812981
文摘In the double-sided arc welding system (DSAW) composing of PAW+TIG arcs, the PAW arc is guided by the TIG arc so that the current mostly flows through the direction of the workpiece thickness and the penetration is greatly improved. To analyze the current density distribution in DSAW is beneficial to understanding of this process. Considering all kinds of dynamic factors acting on the weldpool, this paper discusses firstly the surface deformation of the weldpool and the keyhole formation in PAW+TIG DSAW process on the basis of the magnetohydrodynamic theory and variation principles. Hence, a model of the current density distribution is developed. Through numerical simulation, the current density distribution in PAW+TIG DSAW process is quantitatively analyzed. It shows that the minimal radius of keyhole formed in PAW+TIG DSAW process is 0.5 mm and 89.5 percent of current flows through the keyhole.
文摘A new kind of control system for keyhole plasma arc welding (K-PAW) was developed based on the computer and the Graphics Language--LabVIEW. It can set and output the required current waveforms with desired decreasing slopes so that the corresponding "opening and closing" of keyhole can occur periodically. With this control strategy of welding current waveforms, the workpiece is fully penetrated while no burn-through Occurs. Keyhole plasma arc welding experiments were conducted to verify the stability and reliability of the developed system.
基金The authors are grateful to the financial support to this research from the National Natural Science Foundation of China under Grant No. 50540420570.
文摘Keyhole plasma arc welding experiments are conducted to measure the weld geometry and penetration at different moments during the initial phase from igniting arc to quasi-steady state. Indirect information on keyhole formation and evolution in plasma arc welding can be extracted based on the weld macrophotograph at cross section. It has laid foundation to verify the mathematical models of keyhole plasma arc welding.