The Horqin Sandy Land(HSL), the largest sandy land in the semi-arid agro-pastoral ecotone of Northeast China, has been subject to desertification during the past century. In response, and to control the desertificat...The Horqin Sandy Land(HSL), the largest sandy land in the semi-arid agro-pastoral ecotone of Northeast China, has been subject to desertification during the past century. In response, and to control the desertification,government implemented the Three-North Shelter/Protective Forest Program, world's largest ecological reforestation/afforestation restoration program. The program began in1978 and will continue for 75 years until 2050. Understanding the dynamics of desertification and its driving forces is a precondition for controlling desertification.However, there is little evidence to directly link causal effects with desertification process(i.e., on the changing area of sandy land) because desertification is a complex process,that can be affected by vegetation(including vegetation cover and extent of shelter forests) and water factors such as precipitation, surface soil moisture, and evapotranspiration.The objectives of this study were to identify how influencing factors, especially shelter forests, affected desertification in HSL over a recent decade. We used Landsat TM imagery analysis and path analysis to identify the effects of spatiotemporal changes in water and vegetation parameters during2000–2010. Desertification was controlled during the study period, as indicated by a decrease in desert area at a rate of163.3 km2year-1and an increase in the area with reduced intensity or extent of desertification. Total vegetation cover in HSL increased by 10.6 % during the study period and this factor exerted the greatest direct and indirect effects on slowing desertification. The contribution of total vegetation cover to controlling desertification increased with the intensity of desertification. On slightly and extremely severe desertified areas, vegetation cover contributed 5 and 42 % of the desertification reduction, respectively. There were significant correlations between total vegetation cover and water conditions(i.e., evapotranspiration and precipitation)and the area of shelter forests(P / 0.0001), in which water conditions and the existence of shelter forests contributed49.7 and 12.8 % to total vegetation cover, respectively. The area of shelter forests increased sharply due to program efforts, but only shrub forests had significant direct effects on reducing the area of desertification categorized as slightly desertified. The reason for the lack of direct effect of increased arbor forests(accounting for 95.3 % of the total increase in shelter forests) on reducing desertification might be that the selected arbor species were not suited to water conditions(low precipitation, high evapotranspiration) prevailing at HSL. The establishment of shelter forests aided control of desertification in the HSL region, but the effect was less than expected. Effective control of desertification in the HSL region or other similar sandy areas will require greater improvements in vegetation cover. In particular,shrub species should be selected for plantation with reference to their potential to survive and reproduce in the harsh climatic and weather conditions typical of desertified areas.展开更多
The structure and dynamics of land resources system in the shelter forest region in the Northeast Plain is discussed according to the remote sensing and statistical information from the typical profiles and spots. For...The structure and dynamics of land resources system in the shelter forest region in the Northeast Plain is discussed according to the remote sensing and statistical information from the typical profiles and spots. For agricultural utilization, the land resources system is made up of five components, i.e. man, land resources, water resources,climatic resources and barren land. The local economy depends heavily upon its land resources, especially farm land. Having been exploited for 50-60 years from the 1930s to 1980s, it has already changed from the reclaiming period into the declining period.There is no waste land to be reclaimed. Facing the increase of population and requirements and the decrease of farmland fertility, proper management of land resources is indispensable if local economic and living level is maintained. It is imperative to make artificial regeneration (highest input) for the land resources and to keep fine circle of thesystem. If only natural regeneration if relied, the system will be changed to vicious circle.展开更多
The construction of artificial shelter forests(ASFs)has resulted in substantial ecological,economic,and societal benefits to the Chinese Loess Plateau(CLP).However,the health and benefits of ASFs are being increasingl...The construction of artificial shelter forests(ASFs)has resulted in substantial ecological,economic,and societal benefits to the Chinese Loess Plateau(CLP).However,the health and benefits of ASFs are being increasingly threatened by the formation of low-efficiency artificial shelter forests(LEASFs).In this study,LEASFs are systematically analyzed in terms of their status,formation mechanisms,and developmental obstacles.The key restoration techniques and schemes were summarized to improve the quality and efficiency of LEASFs.LEASFs are formed by relatively complex mechanisms,but they arise mainly due to poor habitat conditions,improper tree species selections,mismatch between stands and habitat,extensive forest management measures,and human interferences.The restoration and improvement of LEASFs are hindered by water deficits,mismatch between stands and habitat,single management purpose,and low efficiency.LEASFs are becoming more complex due to their wide range,the challenges associated with their restoration,and insufficient technological measures for their restoration.The key techniques of the quality and efficiency improvement of LEASFs include basic forest tending methods,near-natural restoration,multifunction-oriented improvement,and systematic restoration.An understanding on the formation mechanisms of LEASFs and a scientific approach toward their restoration are urgently needed and critical for the ecological protection and high-quality development of LEASFs on the CLP.Based on these analyses,we recommend strengthening the monitoring and supervision of LEASFs,considering the bearing capacity of regional water resources,implementing multiple restoration techniques,promoting multifunction-oriented ecological development,and exploring new management concepts to achieve the sustainable development of ASFs on the CLP.展开更多
The "Three Norths" (Northeastern China, Northern China, and Northwestern China)Shelter forest area is located in the north part of china. The area of this region occupies41% of the total area of China. This ...The "Three Norths" (Northeastern China, Northern China, and Northwestern China)Shelter forest area is located in the north part of china. The area of this region occupies41% of the total area of China. This region is eager for being managed because of its fragileecological conditions. Therefore, the basic approach to realize the harmonious developmentof ecological and economic benefits is the rational arrangement of farming, forestry and pas-ure land according to the characteristics of land resources of this region.展开更多
Effects of environmental factors such as climate,topography,vegetation and soil in shelter forests in Three Gorges Reservoir Region on runoff and sediment yields were monitored to identify dominant environmental facto...Effects of environmental factors such as climate,topography,vegetation and soil in shelter forests in Three Gorges Reservoir Region on runoff and sediment yields were monitored to identify dominant environmental factors controlling runoff and sediment yields in 15 runoff plots in study area by soil sampling,laboratory analysis,stepwise regression analysis and path analysis,and to establish the main control environmental factors that affect runoff and sediment yields. The results showed that soil bulk density,herbaceous cover,slope,and canopy density were the significant factors controlling runoff,and the direct path coefficient of each factor was ranked as canopy closure(-0. 628) > litter thickness(-0. 547) > bulk density( 0. 509) > altitude( 0. 289). The indirect path coefficient was ranked as soil bulk density( 0. 354) >litter thickness(-0. 169) > altitude( 0. 126) > canopy closure(-0. 104). Therefore,canopy closure and litter thickness mainly had direct effects on runoff,while soil bulk density mainly had indirect effects through their contributions to other factors. Herbaceous cover,litter thickness,slope,canopy density,and altitude were the significant factors controlling sediment yields. The direct path coefficient of each factor was ranked as herbaceous cover(-0. 815) > litter thickness(-0. 777) > canopy closure(-0. 624) > slope( 0. 620). The indirect path coefficient was ranked as slope( 0. 272) > litter thickness(-0. 131) > canopy closure(-0. 097) > herbaceous cover(-0. 084). Therefore,herbaceous cover and litter thickness mainly had direct effects on sediment yields,while slope mainly had indirect effects through their contributions to other factors. All the selected environmental factors jointly explained 85. 5% and 78. 3% of runoff and sediment yield variability,respectively. However,there were large values of remaining path coefficients of other factors influencing runoff and sediment yields,which indicated that some important factors are not included and should be taken into account.展开更多
The study of soil microbial populations and diversity is an important way to understanding the soil energy process.In this study we analyzed the characteristics of soil microbial populations of the Tarim Desert Highwa...The study of soil microbial populations and diversity is an important way to understanding the soil energy process.In this study we analyzed the characteristics of soil microbial populations of the Tarim Desert Highway shelter-forest,by identifying microbial fatty acids and using methods of conventional cul-tivation.The results illustrated that the amount of soil microbial activity and the diversity of soil microbial fatty acid increased significantly with the plantation age of the shelter-forest;the soil microbial population was dominated by bacteria.The fatty acids of C14︰0,C15︰0,C16︰0,C17︰0,C18︰1ω9,C18︰0,C18︰2ω6 and C21︰0 were found to be dominant soil microbial fatty acids in the shelter-forest soil.Prin-cipal analysis and regression analysis showed that(1) concentrations of fatty acids of C14︰0,C16︰0 and C18︰0 could be used as indicators of total soil microbial population;(2) soil bacteria and actinomycetes populations were closely correlated with the amount of fatty acids of C15︰0 and C17︰0;and(3) soil fungi were closely correlated with the amount of fatty acids of C18︰1ω9 and C18︰2ω6.展开更多
基金supported by grants from the National Nature Science Foundation of China(31025007)the Knowledge Innovation Program of the Chinese Academy of Sciences(KZCX1-YW-08-02)
文摘The Horqin Sandy Land(HSL), the largest sandy land in the semi-arid agro-pastoral ecotone of Northeast China, has been subject to desertification during the past century. In response, and to control the desertification,government implemented the Three-North Shelter/Protective Forest Program, world's largest ecological reforestation/afforestation restoration program. The program began in1978 and will continue for 75 years until 2050. Understanding the dynamics of desertification and its driving forces is a precondition for controlling desertification.However, there is little evidence to directly link causal effects with desertification process(i.e., on the changing area of sandy land) because desertification is a complex process,that can be affected by vegetation(including vegetation cover and extent of shelter forests) and water factors such as precipitation, surface soil moisture, and evapotranspiration.The objectives of this study were to identify how influencing factors, especially shelter forests, affected desertification in HSL over a recent decade. We used Landsat TM imagery analysis and path analysis to identify the effects of spatiotemporal changes in water and vegetation parameters during2000–2010. Desertification was controlled during the study period, as indicated by a decrease in desert area at a rate of163.3 km2year-1and an increase in the area with reduced intensity or extent of desertification. Total vegetation cover in HSL increased by 10.6 % during the study period and this factor exerted the greatest direct and indirect effects on slowing desertification. The contribution of total vegetation cover to controlling desertification increased with the intensity of desertification. On slightly and extremely severe desertified areas, vegetation cover contributed 5 and 42 % of the desertification reduction, respectively. There were significant correlations between total vegetation cover and water conditions(i.e., evapotranspiration and precipitation)and the area of shelter forests(P / 0.0001), in which water conditions and the existence of shelter forests contributed49.7 and 12.8 % to total vegetation cover, respectively. The area of shelter forests increased sharply due to program efforts, but only shrub forests had significant direct effects on reducing the area of desertification categorized as slightly desertified. The reason for the lack of direct effect of increased arbor forests(accounting for 95.3 % of the total increase in shelter forests) on reducing desertification might be that the selected arbor species were not suited to water conditions(low precipitation, high evapotranspiration) prevailing at HSL. The establishment of shelter forests aided control of desertification in the HSL region, but the effect was less than expected. Effective control of desertification in the HSL region or other similar sandy areas will require greater improvements in vegetation cover. In particular,shrub species should be selected for plantation with reference to their potential to survive and reproduce in the harsh climatic and weather conditions typical of desertified areas.
文摘The structure and dynamics of land resources system in the shelter forest region in the Northeast Plain is discussed according to the remote sensing and statistical information from the typical profiles and spots. For agricultural utilization, the land resources system is made up of five components, i.e. man, land resources, water resources,climatic resources and barren land. The local economy depends heavily upon its land resources, especially farm land. Having been exploited for 50-60 years from the 1930s to 1980s, it has already changed from the reclaiming period into the declining period.There is no waste land to be reclaimed. Facing the increase of population and requirements and the decrease of farmland fertility, proper management of land resources is indispensable if local economic and living level is maintained. It is imperative to make artificial regeneration (highest input) for the land resources and to keep fine circle of thesystem. If only natural regeneration if relied, the system will be changed to vicious circle.
基金supported by the Science and Technology Innovation Program of the Shaanxi Academy of Forestry (SXLK2022-02)the National Natural Science Foundation of China (42077452)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA23070201).
文摘The construction of artificial shelter forests(ASFs)has resulted in substantial ecological,economic,and societal benefits to the Chinese Loess Plateau(CLP).However,the health and benefits of ASFs are being increasingly threatened by the formation of low-efficiency artificial shelter forests(LEASFs).In this study,LEASFs are systematically analyzed in terms of their status,formation mechanisms,and developmental obstacles.The key restoration techniques and schemes were summarized to improve the quality and efficiency of LEASFs.LEASFs are formed by relatively complex mechanisms,but they arise mainly due to poor habitat conditions,improper tree species selections,mismatch between stands and habitat,extensive forest management measures,and human interferences.The restoration and improvement of LEASFs are hindered by water deficits,mismatch between stands and habitat,single management purpose,and low efficiency.LEASFs are becoming more complex due to their wide range,the challenges associated with their restoration,and insufficient technological measures for their restoration.The key techniques of the quality and efficiency improvement of LEASFs include basic forest tending methods,near-natural restoration,multifunction-oriented improvement,and systematic restoration.An understanding on the formation mechanisms of LEASFs and a scientific approach toward their restoration are urgently needed and critical for the ecological protection and high-quality development of LEASFs on the CLP.Based on these analyses,we recommend strengthening the monitoring and supervision of LEASFs,considering the bearing capacity of regional water resources,implementing multiple restoration techniques,promoting multifunction-oriented ecological development,and exploring new management concepts to achieve the sustainable development of ASFs on the CLP.
文摘The "Three Norths" (Northeastern China, Northern China, and Northwestern China)Shelter forest area is located in the north part of china. The area of this region occupies41% of the total area of China. This region is eager for being managed because of its fragileecological conditions. Therefore, the basic approach to realize the harmonious developmentof ecological and economic benefits is the rational arrangement of farming, forestry and pas-ure land according to the characteristics of land resources of this region.
基金Supported by National Key Technology Research and Development Program of the Ministry of Science and Technology of China(2015BAD07B04)Key Science and Technology Program of Henan Province,China(152102110059)
文摘Effects of environmental factors such as climate,topography,vegetation and soil in shelter forests in Three Gorges Reservoir Region on runoff and sediment yields were monitored to identify dominant environmental factors controlling runoff and sediment yields in 15 runoff plots in study area by soil sampling,laboratory analysis,stepwise regression analysis and path analysis,and to establish the main control environmental factors that affect runoff and sediment yields. The results showed that soil bulk density,herbaceous cover,slope,and canopy density were the significant factors controlling runoff,and the direct path coefficient of each factor was ranked as canopy closure(-0. 628) > litter thickness(-0. 547) > bulk density( 0. 509) > altitude( 0. 289). The indirect path coefficient was ranked as soil bulk density( 0. 354) >litter thickness(-0. 169) > altitude( 0. 126) > canopy closure(-0. 104). Therefore,canopy closure and litter thickness mainly had direct effects on runoff,while soil bulk density mainly had indirect effects through their contributions to other factors. Herbaceous cover,litter thickness,slope,canopy density,and altitude were the significant factors controlling sediment yields. The direct path coefficient of each factor was ranked as herbaceous cover(-0. 815) > litter thickness(-0. 777) > canopy closure(-0. 624) > slope( 0. 620). The indirect path coefficient was ranked as slope( 0. 272) > litter thickness(-0. 131) > canopy closure(-0. 097) > herbaceous cover(-0. 084). Therefore,herbaceous cover and litter thickness mainly had direct effects on sediment yields,while slope mainly had indirect effects through their contributions to other factors. All the selected environmental factors jointly explained 85. 5% and 78. 3% of runoff and sediment yield variability,respectively. However,there were large values of remaining path coefficients of other factors influencing runoff and sediment yields,which indicated that some important factors are not included and should be taken into account.
基金funded by Western Doctoral Program of Chinese Academy of Sciences,the Innovation Project of Chinese Academy of Science (KZCX2-XB2-13)the National Natural Science Foundation of Xinjiang Uygur Autonomous Region (200821163), and Natural Science Foundation of China (40701098)
文摘The study of soil microbial populations and diversity is an important way to understanding the soil energy process.In this study we analyzed the characteristics of soil microbial populations of the Tarim Desert Highway shelter-forest,by identifying microbial fatty acids and using methods of conventional cul-tivation.The results illustrated that the amount of soil microbial activity and the diversity of soil microbial fatty acid increased significantly with the plantation age of the shelter-forest;the soil microbial population was dominated by bacteria.The fatty acids of C14︰0,C15︰0,C16︰0,C17︰0,C18︰1ω9,C18︰0,C18︰2ω6 and C21︰0 were found to be dominant soil microbial fatty acids in the shelter-forest soil.Prin-cipal analysis and regression analysis showed that(1) concentrations of fatty acids of C14︰0,C16︰0 and C18︰0 could be used as indicators of total soil microbial population;(2) soil bacteria and actinomycetes populations were closely correlated with the amount of fatty acids of C15︰0 and C17︰0;and(3) soil fungi were closely correlated with the amount of fatty acids of C18︰1ω9 and C18︰2ω6.