Catalysts with varying Fe contents were prepared using a sequential impregnation method to investigate the effects of Fe addition on the physicochemical properties of Pt/Al_(2)O_(3) and their performance in methylcycl...Catalysts with varying Fe contents were prepared using a sequential impregnation method to investigate the effects of Fe addition on the physicochemical properties of Pt/Al_(2)O_(3) and their performance in methylcyclohexane(MCH)dehydrogenation.The results demonstrated that the addition of Fe to Pt/Al_(2)O_(3) enhanced the electron density of Pt and improved catalytic activity,while exhibiting negligible influence on the catalytic selectivity for toluene.When the Fe content was 0.057%,the catalyst exhibited the highest MCH consumption rate,which was approximately two times higher than that of the catalyst without Fe.Additionally,the incorporation of Fe inhibited the formation of coke and reduced the quantity of coke deposits on the catalyst,thereby improving its catalytic durability.Overall,Fe shows promise as a prospective secondary element for Pt/Al_(2)O_(3) to enhance the MCH dehydrogenation performance.展开更多
The study explored the influence of defatted flaxseed gum powder(DFGP) on the stability and quality of sesame paste by measuring and analyzing its composition, color, texture, particle size, centrifugal oil separation...The study explored the influence of defatted flaxseed gum powder(DFGP) on the stability and quality of sesame paste by measuring and analyzing its composition, color, texture, particle size, centrifugal oil separation rate,rheological properties, and microstructure. The results showed that the moisture and polysaccharide content of sesame paste was increased as the DFGP increased. Additionally, the hardness, gumminess, and chewiness of the sesame paste was improved, while the presence of particles with small particle size(1–100 μm) was decreased.The rate of oil precipitation was reduced by 28.99% when the amount of DFGP was 6%. The sesame paste samples exhibited pseudoplastic behavior, demonstrating shear thinning. As the shear rate increased, the apparent viscosity of sesame paste gradually decreased. Both the storage modulus(G’) and the loss modulus(G’’) increased as the shear frequency increased. The microstructure observation revealed that protein and oil were evenly distributed in the sesame paste system, and the addition of DFGP enhanced the bonding between oil and protein.This study can provide valuable references for high-quality sesame paste products in the food industry.展开更多
Atmospheric nitrogen(N)deposition is predicted to increase,especially in the subtropics.However,the responses of soil microorganisms to long-term N addition at the molecular level in N-rich subtropical forests have no...Atmospheric nitrogen(N)deposition is predicted to increase,especially in the subtropics.However,the responses of soil microorganisms to long-term N addition at the molecular level in N-rich subtropical forests have not been clarified.A long-term nutrient addition experiment was conducted in a subtropical evergreen old-growth forest in China.The four treatments were:control,low N(50 kg N ha^(-1)a^(-1)),high N(100 kg N ha^(-1)a^(-1)),and combined N and phosphorus(P)(100 kg N ha^(-1)a^(-1)+50 kg P ha^(-1)a^(-1)).Metagenomic sequencing characterized diversity and composition of soil microbial communities and used to construct bacterial/fungal co-occurrence networks.Nutrient-treated soils were more acidic and had higher levels of dissolved organic carbon than controls.There were no significant differences in microbial diversity and community composition across treatments.The addition of nutrients increased the abundance of copiotrophic bacteria and potentially beneficial microorganisms(e.g.,Gemmatimonadetes,Chaetomium,and Aureobasidium).Low N addition increased microbiome network connectivity.Three rare fungi were identified as module hubs under nutrient addition,indicating that low abundance fungi were more sensitive to increased nutrients.The results indicate that the overall composition of microbial communities was stable but not static to long-term N addition.Our findings provide new insights that can aid predictions of the response of soil microbial communities to long-term N addition.展开更多
Human activities and industrialization have significantly increased soil nutrients,such as nitrogen(N)and phos-phorus(P),profoundly impacting the composition and structure of plant community,as well as the ecosystem fu...Human activities and industrialization have significantly increased soil nutrients,such as nitrogen(N)and phos-phorus(P),profoundly impacting the composition and structure of plant community,as well as the ecosystem functions,especially in nutrient-limited ecosystems.However,as the key propagule pool of perennial grasslands,how belowground bud bank and its relationship with aboveground vegetation respond to short-term changes in soil nutrients was still unclear.In this study,we conducted a short-term(2021–2022)soil fertilization experiment with N addition(10 g N m^(-2) yr^(-1))and P addition(5 g N m^(-2) yr^(-1))in the meadow steppe of Inner Mongolia,China,to explore the responses of belowground bud bank,aboveground shoot population and their relationships(represented by the ratio of bud to shoot density-meristem limitation index(MLI))for the whole community and three plant functional groups(perennial rhizomatous grasses-PR,perennial bunchgrasses-PB,and perennial forbs-PF)to nutrient addition.The short-term nutrient addition had no significant influences on belowground bud density,aboveground shoot density,and MLI of the whole plant community.Plant functional groups showed different responses to soil fertilization.Specifically,N addition significantly increased the bud density and shoot density of PR,especially in combination with P addition.N addition reduced the shoot density of PF but had no influence on its bud density and MLI.Nutrient addition had significant effects on the three indicators of PB.Our study indicates that the belowground bud bank and its relationship with aboveground vegetation in temperate meadow steppe are insensitive to short-term soil fertilization,but plant functional groups exhibit specific responses in terms of population regeneration,which implies that plant community composition and ecosystem functions will be changed under the ongoing global change.展开更多
Are all prime numbers linked by four simple functions? Can we predict when a prime will appear in a sequence of primes? If we classify primes into two groups, Group 1 for all primes that appear before ζ (such that , ...Are all prime numbers linked by four simple functions? Can we predict when a prime will appear in a sequence of primes? If we classify primes into two groups, Group 1 for all primes that appear before ζ (such that , for instance 5, ), an even number divisible by 3 and 2, and Group 2 for all primes that are after ζ (such that , for instance 7), then we find a simple function: for each prime in each group, , where n is any natural number. If we start a sequence of primes with 5 for Group 1 and 7 for Group 2, we can attribute a μ value for each prime. The μ value can be attributed to every prime greater than 7. Thus for Group 1, and . Using this formula, all the primes appear for , where μ is any natural number.展开更多
●AIM:To explore the clinical efficacy and safety of stromal lenticule addition keratoplasty(SLAK)with corneal crosslinking(CXL)on patients with corneal ectasia secondary to femtosecond laser-assisted in situ keratomi...●AIM:To explore the clinical efficacy and safety of stromal lenticule addition keratoplasty(SLAK)with corneal crosslinking(CXL)on patients with corneal ectasia secondary to femtosecond laser-assisted in situ keratomileusis(FS-LASIK).●METHODS:A series of 5 patients undertaking SLAK with CXL for the treatment of corneal ectasia secondary to FS-LASIK were followed for 4-9mo.The lenticules were collected from patients undertaking small incision lenticule extraction(SMILE)for the correction of myopia.Adding a stromal lenticule was aimed at improving the corneal thickness for the safe application of crosslinking and compensating for the thin cornea to improve its mechanical strength.●RESULTS:All surgeries were conducted successfully with no significant complications.Their best corrected visual acuity(BCVA)ranged from 0.05 to 0.8-2 before surgery.The pre-operational total corneal thickness ranged from 345-404μm and maximum keratometry(Kmax)ranged from 50.8 to 86.3.After the combination surgery,both the corneal keratometry(range 55.9 to 92.8)and total corneal thickness(range 413-482μm)significantly increased.Four out of 5 patients had improvement of corneal biomechanical parameters(reflected by stiffness parameter A1 in Corvis ST).However,3 patients showed decreased BCVA after surgery due to the development of irregular astigmatism and transient haze.Despite the onset of corneal edema right after SLAK,the corneal topography and thickness generally stabilized after 3mo.●CONCLUSION:SLAK with CXL is a potentially beneficial and safe therapy for advanced corneal ectasia.Future work needs to address the poor predictability of corneal refractometry and compare the outcomes of different surgical modes.展开更多
Objective Current clinical evidence on the effects of home blood pressure telemonitoring(HBPT)on improving blood pressure control comes entirely from developed countries.Thus,we performed this randomized controlled tr...Objective Current clinical evidence on the effects of home blood pressure telemonitoring(HBPT)on improving blood pressure control comes entirely from developed countries.Thus,we performed this randomized controlled trial to evaluate whether HBPT plus support(patient education and clinician remote hypertension management)improves blood pressure control more than usual care(UC)in the Chinese population.Methods This single-center,randomized controlled study was conducted in Beijing,China.Patients aged 30-75 years were eligible for enrolment if they had blood pressure[systolic(SBP)≥140 mmHg and/or diastolic(DBP)≥90 mmHg;or SBP≥130 mmHg and/or DBP≥80 mmHg with diabetes].We recruited 190 patients randomized to either the HBPT or the UC groups for 12 weeks.The primary endpoints were blood pressure reduction and the proportion of patients achieving the target blood pressure.Results Totally,172 patients completed the study,the HBPT plus support group(n=84),and the UC group(n=88).Patients in the plus support group showed a greater reduction in mean ambulatory blood pressure than those in the UC group.The plus support group had a significantly higher proportion of patients who achieved the target blood pressure and maintained a dipper blood pressure pattern at the12th week of follow-up.Additionally,the patients in the plus support group showed lower blood pressure variability and higher drug adherence than those in the UC group.Conclusion HBPT plus additional support results in greater blood pressure reduction,better blood pressure control,a higher proportion of dipper blood pressure patterns,lower blood pressure variability,and higher drug adherence than UC.The development of telemedicine may be the cornerstone of hypertension management in primary care.展开更多
Magnesium hydride(MgH_(2))is the most feasible and effective solid-state hydrogen storage material,which has excellent reversibility but initiates decomposing at high temperatures and has slow kinetics performance.Her...Magnesium hydride(MgH_(2))is the most feasible and effective solid-state hydrogen storage material,which has excellent reversibility but initiates decomposing at high temperatures and has slow kinetics performance.Here,zinc titanate(Zn_(2)TiO_(4))synthesised by the solid-state method was used as an additive to lower the initial temperature for dehydrogenation and enhance the re/dehydrogenation behaviour of MgH_(2).With the presence of Zn_(2)TiO_(4),the starting temperature for the dehydrogenation of MgH_(2)was remarkably lowered to around 290℃–305℃.In addition,within 300 s,the MgH_(2)–Zn_(2)TiO_(4)sample absorbed 5.0 wt.%of H_(2)and 2.2–3.6 wt.%H_(2)was liberated from the composite sample in 30 min,which is faster by 22–36 times than as-milled MgH_(2).The activation energy of the MgH_(2)for the dehydrogenation process was also downshifted to 105.5 k J/mol with the addition of Zn_(2)TiO_(4)indicating a decrease of 22%than as-milled MgH_(2).The superior behaviour of MgH_(2)was due to the formation of Mg Zn_(2),MgO and MgTiO_(3),which are responsible for ameliorating the re/dehydrogenation behaviour of MgH_(2).These findings provide a new understanding of the hydrogen storage behaviour of the catalysed-MgH_(2)system.展开更多
Effects of Gd addition on the strain hardening behavior and yield asymmetry of pure Mg are investigated by subjecting extruded pure Mg,Mg–5Gd,and Mg–15Gd(all in wt%)to tension and compression tests along the extrusi...Effects of Gd addition on the strain hardening behavior and yield asymmetry of pure Mg are investigated by subjecting extruded pure Mg,Mg–5Gd,and Mg–15Gd(all in wt%)to tension and compression tests along the extrusion direction(ED).As the amount of Gd added to pure Mg increases,the basal texture tilts toward the ED and the distribution of c-axes of grains becomes randomized.Under tension,the strain hardening rates of all the materials decrease until fracture.However,under compression,the strain hardening rate increases in the early stage of deformation in pure Mg and Mg–5Gd,whereas it continuously decreases in Mg–15Gd.Pure Mg exhibits considerably high tension-compression yield asymmetry,with a compressive yield strength(CYS)to tensile yield strength(TYS)ratio of 0.4.In contrast,Mg–5Gd exhibits excellent yield symmetry with CYS/TYS of 0.9 and Mg–15Gd exhibits reversed yield asymmetry with CYS/TYS of 1.2.Underlying mechanisms of these drastically different Gd-addition-induced deformation behaviors of the materials are discussed in terms of the crystallographic distribution of grains and the relative activation stresses of basal slip,prismatic slip,pyramidal slip,and{10–12}twinning under tension and compression.展开更多
The nanocrystalline-forming element Cu and magnetic element Co are commonly used as additive elements to tune the structure and improve the properties of alloys.In this study,four kinds of amorphous alloys,Fe_(72)Nb_(...The nanocrystalline-forming element Cu and magnetic element Co are commonly used as additive elements to tune the structure and improve the properties of alloys.In this study,four kinds of amorphous alloys,Fe_(72)Nb_(12)B_(16),Fe_(72)Nb_(12)B_(15)Cu_(1),Fe_(36)Co_(36)Nb_(12)B_(16),and Fe_(36)Co_(36)Nb_(12)B_(15)Cu_(1),were prepared by melt-spinning and annealed at various temperatures to investigate the effects of Cu and Co additions,individually and in combination,on the crystallization and magnetic properties of Fe_(72)Nb_(12)B_(16)alloy.The four kinds of alloys exhibited different crystallization behaviors with different primary crystallization phases observed.For the Fe_(72)Nb_(12)B_(16)alloy,only theα-Mn-type metastable phase formed after annealing.The addition of 1 at.%Cu and 36 at.%Co led to the observation of theα-Mn-type andβ-Mn-type metastable phases,respectively,and a reduction in the crystallization volume fraction in the metastable phase.The Fe_(36)Co_(36)Nb_(12)B_(15)Cu_(1)alloy only exhibitedα-Fe(Co)phase as a primary phase,and the addition of both Cu and Co completely inhibited the precipitation of the metastable phase.Cu clusters were found in energy dispersive spectroscopy elemental maps.Compared with other alloys,Fe_(36)Co_(36)Nb_(12)B_(15)Cu_(1)alloy with both Cu and Co exhibited a lower coercivity(Hc)below 973 K.展开更多
The Li metal battery with ultrahigh-nickel cathode(LiNi_(x)M_(1-x)O_(2),M=Mn,Co,and x≥0.9)under high-voltage is regarded as one of the most promising approaches to fulfill the ambitious target of 400 Wh/kg.However,th...The Li metal battery with ultrahigh-nickel cathode(LiNi_(x)M_(1-x)O_(2),M=Mn,Co,and x≥0.9)under high-voltage is regarded as one of the most promising approaches to fulfill the ambitious target of 400 Wh/kg.However,the practical application is impeded by the instability of electrode/electrolyte interface and Ni-rich cathode itself.Herein we proposed an electron-defect electrolyte additive trimethyl borate(TMB)which is paired with the commercial carbonate electrolyte to construct highly conductive fluorine-and boron-rich cathode electrolyte interface(CEI)on LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)(NCM90)surface and solid electrolyte interphase(SEI)on lithium metal surface.The modified CEI effectively mitigates the structural transformation from layered to disordered rock-salt phase,and consequently alleviate the dissolution of transition metal ions(TMs)and its“cross-talk”effect,while the enhanced SEI enables stable lithium plating/striping and thus demonstrated good compatibility between electrolyte and lithium metal anode.As a result,the common electrolyte with 1 wt%TMB enables 4.7 V NCM90/Li cell cycle stably over 100 cycles with 70%capacity retention.This work highlights the significance of the electron-defect boron compounds for designing desirable interfacial chemistries to achieve high performance NCM90/Li battery under high voltage operation.展开更多
Melt extrusion-based additive manufacturing(ME-AM)is a promising technique to fabricate porous scaffolds for tissue engi-neering applications.However,most synthetic semicrystalline polymers do not possess the intrinsi...Melt extrusion-based additive manufacturing(ME-AM)is a promising technique to fabricate porous scaffolds for tissue engi-neering applications.However,most synthetic semicrystalline polymers do not possess the intrinsic biological activity required to control cell fate.Grafting of biomolecules on polymeric surfaces of AM scaffolds enhances the bioactivity of a construct;however,there are limited strategies available to control the surface density.Here,we report a strategy to tune the surface density of bioactive groups by blending a low molecular weight poly(ε-caprolactone)5k(PCL5k)containing orthogonally reactive azide groups with an unfunctionalized high molecular weight PCL75k at different ratios.Stable porous three-dimensional(3D)scaf-folds were then fabricated using a high weight percentage(75 wt.%)of the low molecular weight PCL 5k.As a proof-of-concept test,we prepared films of three different mass ratios of low and high molecular weight polymers with a thermopress and reacted with an alkynated fluorescent model compound on the surface,yielding a density of 201-561 pmol/cm^(2).Subsequently,a bone morphogenetic protein 2(BMP-2)-derived peptide was grafted onto the films comprising different blend compositions,and the effect of peptide surface density on the osteogenic differentiation of human mesenchymal stromal cells(hMSCs)was assessed.After two weeks of culturing in a basic medium,cells expressed higher levels of BMP receptor II(BMPRII)on films with the conjugated peptide.In addition,we found that alkaline phosphatase activity was only significantly enhanced on films contain-ing the highest peptide density(i.e.,561 pmol/cm^(2)),indicating the importance of the surface density.Taken together,these results emphasize that the density of surface peptides on cell differentiation must be considered at the cell-material interface.Moreover,we have presented a viable strategy for ME-AM community that desires to tune the bulk and surface functionality via blending of(modified)polymers.Furthermore,the use of alkyne-azide“click”chemistry enables spatial control over bioconjugation of many tissue-specific moieties,making this approach a versatile strategy for tissue engineering applications.展开更多
Nitrogen deposition has a considerable impact on biogeochemical cycling in terrestrial ecosystems.However,how litter production and element return respond to N addition remains poorly understood in nitrogen-rich subtr...Nitrogen deposition has a considerable impact on biogeochemical cycling in terrestrial ecosystems.However,how litter production and element return respond to N addition remains poorly understood in nitrogen-rich subtropical regions.In this study,a 4-year nitrogen addition experiment explored its eff ects on foliar litter production and carbon,nitrogen and phosphorus in a subtropical Michelia wilsonii forest.A clear seasonal pattern in foliar litterfall was observed,regardless of nitrogen treatments,with a peak in spring and a smaller one in autumn.Foliar litter increased with increasing nitrogen but did not aff ect litter carbon concentrations and often decreased nitrogen and phosphorous concentrations.The eff ect of nitrogen addition was dependent on time(month/year).Carbon,nitrogen and phosphorous return showed similar bimodal seasonal patterns.Nitrogen addition increased carbon and nitrogen return but did not aff ect phosphorous.Our results suggest that the addition of nitrogen stimulates carbon and nutrient return via litterfall.展开更多
The effects of Ca addition on the microstructure and oxidation properties of a new Mg alloy were studied.The oxidation behavior of the alloys was analyzed by thermal analysis and material characterization of the alloy...The effects of Ca addition on the microstructure and oxidation properties of a new Mg alloy were studied.The oxidation behavior of the alloys was analyzed by thermal analysis and material characterization of the alloys exposed in flame environment;and both electrical and induction furnaces.Moreover,the surface layers were characterized using field emission scanning electron microscopy,and X-ray diffraction technique.It was found that increasing the Ca addition reduces the grain size and increases the fraction of the secondary phases,and enhances the mechanical properties.Moreover,increasing the Ca contents resulted in the formation of a dense CaO/MgO layer on the surface prohibited the oxygen diffusion and assisted in protection of the substrate against further oxidation.Therefore,ignition temperature was increased from 680℃ to 890℃ after addition of the Ca element.The mechanical properties and ignition behavior of the current materials was compared with the literature which it showed an excellent combination of the properties in the developed alloys.展开更多
Bacterial colonization of orthopedic implants is one of the leading causes of failure and clinical complexities for load-bearing metallic implants. Topical or systemic administration of antibiotics may not offer the m...Bacterial colonization of orthopedic implants is one of the leading causes of failure and clinical complexities for load-bearing metallic implants. Topical or systemic administration of antibiotics may not offer the most efficient defense against colonization, especially in the case of secondary infection, leading to surgical removal of implants and in some cases even limbs. In this study, laser powder bed fusion was implemented to fabricate Ti3Al2V alloy by a 1:1 weight mixture of CpTi and Ti6Al4V powders. Ti-Tantalum(Ta)–Copper(Cu) alloys were further analyzed by the addition of Ta and Cu into the Ti3Al2V custom alloy. The biological,mechanical, and tribo-biocorrosion properties of Ti3Al2V alloy were evaluated. A 10 wt.% Ta(10Ta) and 3 wt.% Cu(3Cu) were added to the Ti3Al2V alloy to enhance biocompatibility and impart inherent bacterial resistance. Additively manufactured implants were investigated for resistance against Pseudomonas aeruginosa and Staphylococcus aureus strains of bacteria for up to 48 h. A 3 wt.% Cu addition to Ti3Al2V displayed improved antibacterial efficacy, i.e.78%–86% with respect to CpTi. Mechanical properties for Ti3Al2V–10Ta–3Cu alloy were evaluated, demonstrating excellent fatigue resistance, exceptional shear strength, and improved tribological and tribo-biocorrosion characteristics when compared to Ti6Al4V. In vivo studies using a rat distal femur model revealed improved early-stage osseointegration for alloys with10 wt.% Ta addition compared to CpTi and Ti6Al4V. The 3 wt.% Cu-added compositions displayed biocompatibility and no adverse infammatory response in vivo. Our results establish the Ti3Al2V–10Ta–3Cu alloy’s synergistic effect on improving both in vivo biocompatibility and microbial resistance for the next generation of load-bearing metallic implants.展开更多
Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infue...Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infuenced by the phase characteristics and microstructure.In this work,Nd-Fe-B magnets were manufactured using vacuum induction melting(VIM),laser directed energy deposition(LDED)and laser powder bed fusion(LPBF)technologies.Themicrostructure evolution and phase selection of Nd-Fe-B magnets were then clarified in detail.The results indicated that the solidification velocity(V)and cooling rate(R)are key factors in the phase selection.In terms of the VIM-casting Nd-Fe-B magnet,a large volume fraction of theα-Fe soft magnetic phase(39.7 vol.%)and Nd2Fe17Bxmetastable phase(34.7 vol.%)areformed due to the low R(2.3×10-1?C s-1),whereas only a minor fraction of the Nd2Fe14B hard magnetic phase(5.15 vol.%)is presented.For the LDED-processed Nd-Fe-B deposit,although the Nd2Fe14B hard magnetic phase also had a low value(3.4 vol.%)as the values of V(<10-2m s-1)and R(5.06×103?C s-1)increased,part of theα-Fe soft magnetic phase(31.7vol.%)is suppressed,and a higher volume of Nd2Fe17Bxmetastable phases(47.5 vol.%)areformed.As a result,both the VIM-casting and LDED-processed Nd-Fe-B deposits exhibited poor magnetic properties.In contrast,employing the high values of V(>10-2m s-1)and R(1.45×106?C s-1)in the LPBF process resulted in the substantial formation of the Nd2Fe14B hard magnetic phase(55.8 vol.%)directly from the liquid,while theα-Fe soft magnetic phase and Nd2Fe17Bxmetastable phase precipitation are suppressed in the LPBF-processed Nd-Fe-B magnet.Additionally,crystallographic texture analysis reveals that the LPBF-processedNd-Fe-B magnets exhibit isotropic magnetic characteristics.Consequently,the LPBF-processed Nd-Fe-B deposit,exhibiting a coercivity of 656 k A m-1,remanence of 0.79 T and maximum energy product of 71.5 k J m-3,achieved an acceptable magnetic performance,comparable to other additive manufacturing processed Nd-Fe-B magnets from MQP(Nd-lean)Nd-Fe-Bpowder.展开更多
High voltage is necessary for high energy lithium-ion batteries but difficult to achieve because of the highly deteriorated cyclability of the batteries.A novel strategy is developed to extend cyclability of a high vo...High voltage is necessary for high energy lithium-ion batteries but difficult to achieve because of the highly deteriorated cyclability of the batteries.A novel strategy is developed to extend cyclability of a high voltage lithium-ion battery,LiNi_(0.5)Mn_(1.5)O_(4)/Graphite(LNMO/Graphite)cell,which emphasizes a rational design of an electrolyte additive that can effectively construct protective interphases on anode and cathode and highly eliminate the effect of hydrogen fluoride(HF).5-Trifluoromethylpyridine-trime thyl lithium borate(LTFMP-TMB),is synthesized,featuring with multi-functionalities.Its anion TFMPTMB-tends to be enriched on cathode and can be preferentially oxidized yielding TMB and radical TFMP-.Both TMB and radical TFMP can combine HF and thus eliminate the detrimental effect of HF on cathode,while the TMB dragged on cathode thus takes a preferential oxidation and constructs a protective cathode interphase.On the other hand,LTFMP-TMB is preferentially reduced on anode and constructs a protective anode interphase.Consequently,a small amount of LTFMP-TMB(0.2%)in 1.0 M LiPF6in EC/DEC/EMC(3/2/5,wt%)results in a highly improved cyclability of LNMO/Graphite cell,with the capacity retention enhanced from 52%to 80%after 150 cycles at 0.5 C between 3.5 and 4.8 V.The as-developed strategy provides a model of designing electrolyte additives for improving cyclability of high voltage batteries.展开更多
Electrolytic aqueous zinc-manganese(Zn–Mn) batteries have the advantage of high discharge voltage and high capacity due to two-electron reactions. However, the pitfall of electrolytic Zn–Mn batteries is the sluggish...Electrolytic aqueous zinc-manganese(Zn–Mn) batteries have the advantage of high discharge voltage and high capacity due to two-electron reactions. However, the pitfall of electrolytic Zn–Mn batteries is the sluggish deposition reaction kinetics of manganese oxide during the charge process and short cycle life. We show that, incorporating ZnO electrolyte additive can form a neutral and highly viscous gel-like electrolyte and render a new form of electrolytic Zn–Mn batteries with significantly improved charging capabilities. Specifically, the ZnO gel-like electrolyte activates the zinc sulfate hydroxide hydrate assisted Mn^(2+) deposition reaction and induces phase and structure change of the deposited manganese oxide(Zn_(2)Mn_(3)O_8·H_(2)O nanorods array), resulting in a significant enhancement of the charge capability and discharge efficiency. The charge capacity increases to 2.5 mAh cm^(-2) after 1 h constant-voltage charging at 2.0 V vs. Zn/Zn^(2+), and the capacity can retain for up to 2000 cycles with negligible attenuation. This research lays the foundation for the advancement of electrolytic Zn–Mn batteries with enhanced charging capability.展开更多
Anode-free Li-metal batteries are of significant interest to energy storage industries due to their intrinsically high energy.However,the accumulative Li dendrites and dead Li continuously consume active Li during cyc...Anode-free Li-metal batteries are of significant interest to energy storage industries due to their intrinsically high energy.However,the accumulative Li dendrites and dead Li continuously consume active Li during cycling.That results in a short lifetime and low Coulombic efficiency of anode-free Li-metal batteries.Introducing effective electrolyte additives can improve the Li deposition homogeneity and solid electrolyte interphase(SEI)stability for anode-free Li-metal batteries.Herein,we reveal that introducing dual additives,composed of LiAsF6 and fluoroethylene carbonate,into a low-cost commercial carbonate electrolyte will boost the cycle life and average Coulombic efficiency of NMC‖Cu anode-free Li-metal batteries.The NMC‖Cu anode-free Li-metal batteries with the dual additives exhibit a capacity retention of about 75%after 50 cycles,much higher than those with bare electrolytes(35%).The average Coulombic efficiency of the NMC‖Cu anode-free Li-metal batteries with additives can maintain 98.3%over 100 cycles.In contrast,the average Coulombic efficiency without additives rapidly decline to 97%after only 50 cycles.In situ Raman measurements reveal that the prepared dual additives facilitate denser and smoother Li morphology during Li deposition.The dual additives significantly suppress the Li dendrite growth,enabling stable SEI formation on anode and cathode surfaces.Our results provide a broad view of developing low-cost and high-effective functional electrolytes for high-energy and long-life anode-free Li-metal batteries.展开更多
The effect of adding a small amount of Ag on the microstructure evolution and superplastic properties of Mg-Y-Er-Zn(WEZ612) alloys was systematically studied.The basal texture of the refined WEZ612 alloy produced by e...The effect of adding a small amount of Ag on the microstructure evolution and superplastic properties of Mg-Y-Er-Zn(WEZ612) alloys was systematically studied.The basal texture of the refined WEZ612 alloy produced by equal channel angular pressing was altered to a non-basal structure upon the addition of Ag.Ag addition also refined the grain size and promoted the formation of a large number of nano-14H-long period stacking ordered phases.Using high-resolution transmission electron microscopy,many nano-precipitated phases were detected on the basal plane of the Mg-Y-Er-Zn-1Ag(WEZ612-1Ag) alloy,The nano-precipitated phases on the basal plane improved the thermal stability of the alloy,lowered the deformation activation energy(Q),and improved the stress sensitivity index(m).At 523 K with a strain rate of 10^(-2) s^(-1),the Q value of WEZ612 was higher than that of WEZ612-1Ag(299.14 and 128.5 kJ mol^(-1),respectively).In contrast,the m value of the WEZ612 alloy(0.16) was lower than that of the WEZ612-1Ag alloy(0.46).At 623 K with a tensile rate of 10^(-2) s^(-1),the WEZ612 and WEZ612-1Ag alloys were elongated by 182% and 495%,respectively,with the latter exhibiting high-strain-rate and low-temperature superplasticity.The improved superplasticity of the WEZ612-1Ag alloy is attributed to the nano-precipitated phases,which effectively limit the cavity extension during superplastic deformation.展开更多
文摘Catalysts with varying Fe contents were prepared using a sequential impregnation method to investigate the effects of Fe addition on the physicochemical properties of Pt/Al_(2)O_(3) and their performance in methylcyclohexane(MCH)dehydrogenation.The results demonstrated that the addition of Fe to Pt/Al_(2)O_(3) enhanced the electron density of Pt and improved catalytic activity,while exhibiting negligible influence on the catalytic selectivity for toluene.When the Fe content was 0.057%,the catalyst exhibited the highest MCH consumption rate,which was approximately two times higher than that of the catalyst without Fe.Additionally,the incorporation of Fe inhibited the formation of coke and reduced the quantity of coke deposits on the catalyst,thereby improving its catalytic durability.Overall,Fe shows promise as a prospective secondary element for Pt/Al_(2)O_(3) to enhance the MCH dehydrogenation performance.
基金This study was supported by the National Key Research and Development Program of China(2023YFD2100403)the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2021-OCRI)+2 种基金the earmarked fund for CARS-14,the Innovation Group Project of Hubei Province(2023AFA042)the Key Research Projects of Hubei Province(2020BBA045)the Knowledge Innovation Program of Wuhan-Basic Research(3562).
文摘The study explored the influence of defatted flaxseed gum powder(DFGP) on the stability and quality of sesame paste by measuring and analyzing its composition, color, texture, particle size, centrifugal oil separation rate,rheological properties, and microstructure. The results showed that the moisture and polysaccharide content of sesame paste was increased as the DFGP increased. Additionally, the hardness, gumminess, and chewiness of the sesame paste was improved, while the presence of particles with small particle size(1–100 μm) was decreased.The rate of oil precipitation was reduced by 28.99% when the amount of DFGP was 6%. The sesame paste samples exhibited pseudoplastic behavior, demonstrating shear thinning. As the shear rate increased, the apparent viscosity of sesame paste gradually decreased. Both the storage modulus(G’) and the loss modulus(G’’) increased as the shear frequency increased. The microstructure observation revealed that protein and oil were evenly distributed in the sesame paste system, and the addition of DFGP enhanced the bonding between oil and protein.This study can provide valuable references for high-quality sesame paste products in the food industry.
基金supported by the National Science Foundation of China(No.31770672 and 3137062)the National Basic Research Program of China(No.2010CB950602)。
文摘Atmospheric nitrogen(N)deposition is predicted to increase,especially in the subtropics.However,the responses of soil microorganisms to long-term N addition at the molecular level in N-rich subtropical forests have not been clarified.A long-term nutrient addition experiment was conducted in a subtropical evergreen old-growth forest in China.The four treatments were:control,low N(50 kg N ha^(-1)a^(-1)),high N(100 kg N ha^(-1)a^(-1)),and combined N and phosphorus(P)(100 kg N ha^(-1)a^(-1)+50 kg P ha^(-1)a^(-1)).Metagenomic sequencing characterized diversity and composition of soil microbial communities and used to construct bacterial/fungal co-occurrence networks.Nutrient-treated soils were more acidic and had higher levels of dissolved organic carbon than controls.There were no significant differences in microbial diversity and community composition across treatments.The addition of nutrients increased the abundance of copiotrophic bacteria and potentially beneficial microorganisms(e.g.,Gemmatimonadetes,Chaetomium,and Aureobasidium).Low N addition increased microbiome network connectivity.Three rare fungi were identified as module hubs under nutrient addition,indicating that low abundance fungi were more sensitive to increased nutrients.The results indicate that the overall composition of microbial communities was stable but not static to long-term N addition.Our findings provide new insights that can aid predictions of the response of soil microbial communities to long-term N addition.
基金support from the National Natural Science Foundation of China(41877542).
文摘Human activities and industrialization have significantly increased soil nutrients,such as nitrogen(N)and phos-phorus(P),profoundly impacting the composition and structure of plant community,as well as the ecosystem functions,especially in nutrient-limited ecosystems.However,as the key propagule pool of perennial grasslands,how belowground bud bank and its relationship with aboveground vegetation respond to short-term changes in soil nutrients was still unclear.In this study,we conducted a short-term(2021–2022)soil fertilization experiment with N addition(10 g N m^(-2) yr^(-1))and P addition(5 g N m^(-2) yr^(-1))in the meadow steppe of Inner Mongolia,China,to explore the responses of belowground bud bank,aboveground shoot population and their relationships(represented by the ratio of bud to shoot density-meristem limitation index(MLI))for the whole community and three plant functional groups(perennial rhizomatous grasses-PR,perennial bunchgrasses-PB,and perennial forbs-PF)to nutrient addition.The short-term nutrient addition had no significant influences on belowground bud density,aboveground shoot density,and MLI of the whole plant community.Plant functional groups showed different responses to soil fertilization.Specifically,N addition significantly increased the bud density and shoot density of PR,especially in combination with P addition.N addition reduced the shoot density of PF but had no influence on its bud density and MLI.Nutrient addition had significant effects on the three indicators of PB.Our study indicates that the belowground bud bank and its relationship with aboveground vegetation in temperate meadow steppe are insensitive to short-term soil fertilization,but plant functional groups exhibit specific responses in terms of population regeneration,which implies that plant community composition and ecosystem functions will be changed under the ongoing global change.
文摘Are all prime numbers linked by four simple functions? Can we predict when a prime will appear in a sequence of primes? If we classify primes into two groups, Group 1 for all primes that appear before ζ (such that , for instance 5, ), an even number divisible by 3 and 2, and Group 2 for all primes that are after ζ (such that , for instance 7), then we find a simple function: for each prime in each group, , where n is any natural number. If we start a sequence of primes with 5 for Group 1 and 7 for Group 2, we can attribute a μ value for each prime. The μ value can be attributed to every prime greater than 7. Thus for Group 1, and . Using this formula, all the primes appear for , where μ is any natural number.
基金Supported by the Science&Technology Department of Sichuan Province(China)Funding Project(No.2021YFS0221,No.2023YFS0179)1.3.5 Project for Disciplines of Excellence,West China Hospital,Sichuan University(No.2022HXFH032,No.ZYJC21058)the Postdoctoral Research Funding of West China Hospital,Sichuan University,China(No.2020HXBH044).
文摘●AIM:To explore the clinical efficacy and safety of stromal lenticule addition keratoplasty(SLAK)with corneal crosslinking(CXL)on patients with corneal ectasia secondary to femtosecond laser-assisted in situ keratomileusis(FS-LASIK).●METHODS:A series of 5 patients undertaking SLAK with CXL for the treatment of corneal ectasia secondary to FS-LASIK were followed for 4-9mo.The lenticules were collected from patients undertaking small incision lenticule extraction(SMILE)for the correction of myopia.Adding a stromal lenticule was aimed at improving the corneal thickness for the safe application of crosslinking and compensating for the thin cornea to improve its mechanical strength.●RESULTS:All surgeries were conducted successfully with no significant complications.Their best corrected visual acuity(BCVA)ranged from 0.05 to 0.8-2 before surgery.The pre-operational total corneal thickness ranged from 345-404μm and maximum keratometry(Kmax)ranged from 50.8 to 86.3.After the combination surgery,both the corneal keratometry(range 55.9 to 92.8)and total corneal thickness(range 413-482μm)significantly increased.Four out of 5 patients had improvement of corneal biomechanical parameters(reflected by stiffness parameter A1 in Corvis ST).However,3 patients showed decreased BCVA after surgery due to the development of irregular astigmatism and transient haze.Despite the onset of corneal edema right after SLAK,the corneal topography and thickness generally stabilized after 3mo.●CONCLUSION:SLAK with CXL is a potentially beneficial and safe therapy for advanced corneal ectasia.Future work needs to address the poor predictability of corneal refractometry and compare the outcomes of different surgical modes.
基金The Project of the National Ministry of Industry and Information Technology[2020-0103-3-1-1]The Project of Beijing Science and technology“capital characteristics”[Z181100001718007]。
文摘Objective Current clinical evidence on the effects of home blood pressure telemonitoring(HBPT)on improving blood pressure control comes entirely from developed countries.Thus,we performed this randomized controlled trial to evaluate whether HBPT plus support(patient education and clinician remote hypertension management)improves blood pressure control more than usual care(UC)in the Chinese population.Methods This single-center,randomized controlled study was conducted in Beijing,China.Patients aged 30-75 years were eligible for enrolment if they had blood pressure[systolic(SBP)≥140 mmHg and/or diastolic(DBP)≥90 mmHg;or SBP≥130 mmHg and/or DBP≥80 mmHg with diabetes].We recruited 190 patients randomized to either the HBPT or the UC groups for 12 weeks.The primary endpoints were blood pressure reduction and the proportion of patients achieving the target blood pressure.Results Totally,172 patients completed the study,the HBPT plus support group(n=84),and the UC group(n=88).Patients in the plus support group showed a greater reduction in mean ambulatory blood pressure than those in the UC group.The plus support group had a significantly higher proportion of patients who achieved the target blood pressure and maintained a dipper blood pressure pattern at the12th week of follow-up.Additionally,the patients in the plus support group showed lower blood pressure variability and higher drug adherence than those in the UC group.Conclusion HBPT plus additional support results in greater blood pressure reduction,better blood pressure control,a higher proportion of dipper blood pressure patterns,lower blood pressure variability,and higher drug adherence than UC.The development of telemedicine may be the cornerstone of hypertension management in primary care.
基金Universiti Malaysia Terengganu(UMT)for the funding provided by Golden Goose Research Grant(GGRG)VOT 55190。
文摘Magnesium hydride(MgH_(2))is the most feasible and effective solid-state hydrogen storage material,which has excellent reversibility but initiates decomposing at high temperatures and has slow kinetics performance.Here,zinc titanate(Zn_(2)TiO_(4))synthesised by the solid-state method was used as an additive to lower the initial temperature for dehydrogenation and enhance the re/dehydrogenation behaviour of MgH_(2).With the presence of Zn_(2)TiO_(4),the starting temperature for the dehydrogenation of MgH_(2)was remarkably lowered to around 290℃–305℃.In addition,within 300 s,the MgH_(2)–Zn_(2)TiO_(4)sample absorbed 5.0 wt.%of H_(2)and 2.2–3.6 wt.%H_(2)was liberated from the composite sample in 30 min,which is faster by 22–36 times than as-milled MgH_(2).The activation energy of the MgH_(2)for the dehydrogenation process was also downshifted to 105.5 k J/mol with the addition of Zn_(2)TiO_(4)indicating a decrease of 22%than as-milled MgH_(2).The superior behaviour of MgH_(2)was due to the formation of Mg Zn_(2),MgO and MgTiO_(3),which are responsible for ameliorating the re/dehydrogenation behaviour of MgH_(2).These findings provide a new understanding of the hydrogen storage behaviour of the catalysed-MgH_(2)system.
基金supported by the National Research Foundation of Korea(NRF)grant(No.2019R1A2C1085272)funded by the Ministry of Science,ICT and Future Planning(MSIP,South Korea)。
文摘Effects of Gd addition on the strain hardening behavior and yield asymmetry of pure Mg are investigated by subjecting extruded pure Mg,Mg–5Gd,and Mg–15Gd(all in wt%)to tension and compression tests along the extrusion direction(ED).As the amount of Gd added to pure Mg increases,the basal texture tilts toward the ED and the distribution of c-axes of grains becomes randomized.Under tension,the strain hardening rates of all the materials decrease until fracture.However,under compression,the strain hardening rate increases in the early stage of deformation in pure Mg and Mg–5Gd,whereas it continuously decreases in Mg–15Gd.Pure Mg exhibits considerably high tension-compression yield asymmetry,with a compressive yield strength(CYS)to tensile yield strength(TYS)ratio of 0.4.In contrast,Mg–5Gd exhibits excellent yield symmetry with CYS/TYS of 0.9 and Mg–15Gd exhibits reversed yield asymmetry with CYS/TYS of 1.2.Underlying mechanisms of these drastically different Gd-addition-induced deformation behaviors of the materials are discussed in terms of the crystallographic distribution of grains and the relative activation stresses of basal slip,prismatic slip,pyramidal slip,and{10–12}twinning under tension and compression.
基金Project supported by the National Natural Science Foundation of China(Grant No.21905110)the Natural Science Foundation of Jilin Province of China(Grant No.YDZJ202201ZYTS319)+1 种基金the Sinoma Institute of Materials Research Co.Ltd.of Guangzhou Province of China。
文摘The nanocrystalline-forming element Cu and magnetic element Co are commonly used as additive elements to tune the structure and improve the properties of alloys.In this study,four kinds of amorphous alloys,Fe_(72)Nb_(12)B_(16),Fe_(72)Nb_(12)B_(15)Cu_(1),Fe_(36)Co_(36)Nb_(12)B_(16),and Fe_(36)Co_(36)Nb_(12)B_(15)Cu_(1),were prepared by melt-spinning and annealed at various temperatures to investigate the effects of Cu and Co additions,individually and in combination,on the crystallization and magnetic properties of Fe_(72)Nb_(12)B_(16)alloy.The four kinds of alloys exhibited different crystallization behaviors with different primary crystallization phases observed.For the Fe_(72)Nb_(12)B_(16)alloy,only theα-Mn-type metastable phase formed after annealing.The addition of 1 at.%Cu and 36 at.%Co led to the observation of theα-Mn-type andβ-Mn-type metastable phases,respectively,and a reduction in the crystallization volume fraction in the metastable phase.The Fe_(36)Co_(36)Nb_(12)B_(15)Cu_(1)alloy only exhibitedα-Fe(Co)phase as a primary phase,and the addition of both Cu and Co completely inhibited the precipitation of the metastable phase.Cu clusters were found in energy dispersive spectroscopy elemental maps.Compared with other alloys,Fe_(36)Co_(36)Nb_(12)B_(15)Cu_(1)alloy with both Cu and Co exhibited a lower coercivity(Hc)below 973 K.
基金financially supported by the National Key Research and Development Program of China(2022YFE0206300)the National Natural Science Foundation of China(U21A2081,22075074,22209047)+1 种基金the Natural Science Foundation of Hunan Province(2022JJ40140)the Hunan Provincial Department of Education Outstanding Youth Project(22B0864,23B0037)。
文摘The Li metal battery with ultrahigh-nickel cathode(LiNi_(x)M_(1-x)O_(2),M=Mn,Co,and x≥0.9)under high-voltage is regarded as one of the most promising approaches to fulfill the ambitious target of 400 Wh/kg.However,the practical application is impeded by the instability of electrode/electrolyte interface and Ni-rich cathode itself.Herein we proposed an electron-defect electrolyte additive trimethyl borate(TMB)which is paired with the commercial carbonate electrolyte to construct highly conductive fluorine-and boron-rich cathode electrolyte interface(CEI)on LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)(NCM90)surface and solid electrolyte interphase(SEI)on lithium metal surface.The modified CEI effectively mitigates the structural transformation from layered to disordered rock-salt phase,and consequently alleviate the dissolution of transition metal ions(TMs)and its“cross-talk”effect,while the enhanced SEI enables stable lithium plating/striping and thus demonstrated good compatibility between electrolyte and lithium metal anode.As a result,the common electrolyte with 1 wt%TMB enables 4.7 V NCM90/Li cell cycle stably over 100 cycles with 70%capacity retention.This work highlights the significance of the electron-defect boron compounds for designing desirable interfacial chemistries to achieve high performance NCM90/Li battery under high voltage operation.
基金the European Research Council starting grant “Cell Hybridge” for financial support under the Horizon2020 framework program (Grant#637308)the Province of Limburg for support and funding
文摘Melt extrusion-based additive manufacturing(ME-AM)is a promising technique to fabricate porous scaffolds for tissue engi-neering applications.However,most synthetic semicrystalline polymers do not possess the intrinsic biological activity required to control cell fate.Grafting of biomolecules on polymeric surfaces of AM scaffolds enhances the bioactivity of a construct;however,there are limited strategies available to control the surface density.Here,we report a strategy to tune the surface density of bioactive groups by blending a low molecular weight poly(ε-caprolactone)5k(PCL5k)containing orthogonally reactive azide groups with an unfunctionalized high molecular weight PCL75k at different ratios.Stable porous three-dimensional(3D)scaf-folds were then fabricated using a high weight percentage(75 wt.%)of the low molecular weight PCL 5k.As a proof-of-concept test,we prepared films of three different mass ratios of low and high molecular weight polymers with a thermopress and reacted with an alkynated fluorescent model compound on the surface,yielding a density of 201-561 pmol/cm^(2).Subsequently,a bone morphogenetic protein 2(BMP-2)-derived peptide was grafted onto the films comprising different blend compositions,and the effect of peptide surface density on the osteogenic differentiation of human mesenchymal stromal cells(hMSCs)was assessed.After two weeks of culturing in a basic medium,cells expressed higher levels of BMP receptor II(BMPRII)on films with the conjugated peptide.In addition,we found that alkaline phosphatase activity was only significantly enhanced on films contain-ing the highest peptide density(i.e.,561 pmol/cm^(2)),indicating the importance of the surface density.Taken together,these results emphasize that the density of surface peptides on cell differentiation must be considered at the cell-material interface.Moreover,we have presented a viable strategy for ME-AM community that desires to tune the bulk and surface functionality via blending of(modified)polymers.Furthermore,the use of alkyne-azide“click”chemistry enables spatial control over bioconjugation of many tissue-specific moieties,making this approach a versatile strategy for tissue engineering applications.
基金supported by the National Natural Science Foundation of China(grants 32071745,32001165,31901295 and 31800519)the Program of Sichuan Excellent Youth Sci-Tech Foundation(2020JDJQ0052)+1 种基金the Applied Basic Research Program of Sichuan of China(2021YJ0340)the National Key Research and Development Program of China(2016YFC0502505 and 2017YFC0505003).
文摘Nitrogen deposition has a considerable impact on biogeochemical cycling in terrestrial ecosystems.However,how litter production and element return respond to N addition remains poorly understood in nitrogen-rich subtropical regions.In this study,a 4-year nitrogen addition experiment explored its eff ects on foliar litter production and carbon,nitrogen and phosphorus in a subtropical Michelia wilsonii forest.A clear seasonal pattern in foliar litterfall was observed,regardless of nitrogen treatments,with a peak in spring and a smaller one in autumn.Foliar litter increased with increasing nitrogen but did not aff ect litter carbon concentrations and often decreased nitrogen and phosphorous concentrations.The eff ect of nitrogen addition was dependent on time(month/year).Carbon,nitrogen and phosphorous return showed similar bimodal seasonal patterns.Nitrogen addition increased carbon and nitrogen return but did not aff ect phosphorous.Our results suggest that the addition of nitrogen stimulates carbon and nutrient return via litterfall.
基金the Advanced Research and Technology of Magnesium (ARTofMag) research core for their help and support for this study.
文摘The effects of Ca addition on the microstructure and oxidation properties of a new Mg alloy were studied.The oxidation behavior of the alloys was analyzed by thermal analysis and material characterization of the alloys exposed in flame environment;and both electrical and induction furnaces.Moreover,the surface layers were characterized using field emission scanning electron microscopy,and X-ray diffraction technique.It was found that increasing the Ca addition reduces the grain size and increases the fraction of the secondary phases,and enhances the mechanical properties.Moreover,increasing the Ca contents resulted in the formation of a dense CaO/MgO layer on the surface prohibited the oxygen diffusion and assisted in protection of the substrate against further oxidation.Therefore,ignition temperature was increased from 680℃ to 890℃ after addition of the Ca element.The mechanical properties and ignition behavior of the current materials was compared with the literature which it showed an excellent combination of the properties in the developed alloys.
基金supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under Award Numbers R01 AR067306 and R01 AR078241。
文摘Bacterial colonization of orthopedic implants is one of the leading causes of failure and clinical complexities for load-bearing metallic implants. Topical or systemic administration of antibiotics may not offer the most efficient defense against colonization, especially in the case of secondary infection, leading to surgical removal of implants and in some cases even limbs. In this study, laser powder bed fusion was implemented to fabricate Ti3Al2V alloy by a 1:1 weight mixture of CpTi and Ti6Al4V powders. Ti-Tantalum(Ta)–Copper(Cu) alloys were further analyzed by the addition of Ta and Cu into the Ti3Al2V custom alloy. The biological,mechanical, and tribo-biocorrosion properties of Ti3Al2V alloy were evaluated. A 10 wt.% Ta(10Ta) and 3 wt.% Cu(3Cu) were added to the Ti3Al2V alloy to enhance biocompatibility and impart inherent bacterial resistance. Additively manufactured implants were investigated for resistance against Pseudomonas aeruginosa and Staphylococcus aureus strains of bacteria for up to 48 h. A 3 wt.% Cu addition to Ti3Al2V displayed improved antibacterial efficacy, i.e.78%–86% with respect to CpTi. Mechanical properties for Ti3Al2V–10Ta–3Cu alloy were evaluated, demonstrating excellent fatigue resistance, exceptional shear strength, and improved tribological and tribo-biocorrosion characteristics when compared to Ti6Al4V. In vivo studies using a rat distal femur model revealed improved early-stage osseointegration for alloys with10 wt.% Ta addition compared to CpTi and Ti6Al4V. The 3 wt.% Cu-added compositions displayed biocompatibility and no adverse infammatory response in vivo. Our results establish the Ti3Al2V–10Ta–3Cu alloy’s synergistic effect on improving both in vivo biocompatibility and microbial resistance for the next generation of load-bearing metallic implants.
基金supported by the National Key R&D Program of China(Grant No.2022YFB4600300)the National Natural Science Foundation of China(No.U22A20189,52175364)the China Scholarship Council(Grant No.202206290134)。
文摘Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infuenced by the phase characteristics and microstructure.In this work,Nd-Fe-B magnets were manufactured using vacuum induction melting(VIM),laser directed energy deposition(LDED)and laser powder bed fusion(LPBF)technologies.Themicrostructure evolution and phase selection of Nd-Fe-B magnets were then clarified in detail.The results indicated that the solidification velocity(V)and cooling rate(R)are key factors in the phase selection.In terms of the VIM-casting Nd-Fe-B magnet,a large volume fraction of theα-Fe soft magnetic phase(39.7 vol.%)and Nd2Fe17Bxmetastable phase(34.7 vol.%)areformed due to the low R(2.3×10-1?C s-1),whereas only a minor fraction of the Nd2Fe14B hard magnetic phase(5.15 vol.%)is presented.For the LDED-processed Nd-Fe-B deposit,although the Nd2Fe14B hard magnetic phase also had a low value(3.4 vol.%)as the values of V(<10-2m s-1)and R(5.06×103?C s-1)increased,part of theα-Fe soft magnetic phase(31.7vol.%)is suppressed,and a higher volume of Nd2Fe17Bxmetastable phases(47.5 vol.%)areformed.As a result,both the VIM-casting and LDED-processed Nd-Fe-B deposits exhibited poor magnetic properties.In contrast,employing the high values of V(>10-2m s-1)and R(1.45×106?C s-1)in the LPBF process resulted in the substantial formation of the Nd2Fe14B hard magnetic phase(55.8 vol.%)directly from the liquid,while theα-Fe soft magnetic phase and Nd2Fe17Bxmetastable phase precipitation are suppressed in the LPBF-processed Nd-Fe-B magnet.Additionally,crystallographic texture analysis reveals that the LPBF-processedNd-Fe-B magnets exhibit isotropic magnetic characteristics.Consequently,the LPBF-processed Nd-Fe-B deposit,exhibiting a coercivity of 656 k A m-1,remanence of 0.79 T and maximum energy product of 71.5 k J m-3,achieved an acceptable magnetic performance,comparable to other additive manufacturing processed Nd-Fe-B magnets from MQP(Nd-lean)Nd-Fe-Bpowder.
基金supported by the National Natural Science Foundation of China(22179041)。
文摘High voltage is necessary for high energy lithium-ion batteries but difficult to achieve because of the highly deteriorated cyclability of the batteries.A novel strategy is developed to extend cyclability of a high voltage lithium-ion battery,LiNi_(0.5)Mn_(1.5)O_(4)/Graphite(LNMO/Graphite)cell,which emphasizes a rational design of an electrolyte additive that can effectively construct protective interphases on anode and cathode and highly eliminate the effect of hydrogen fluoride(HF).5-Trifluoromethylpyridine-trime thyl lithium borate(LTFMP-TMB),is synthesized,featuring with multi-functionalities.Its anion TFMPTMB-tends to be enriched on cathode and can be preferentially oxidized yielding TMB and radical TFMP-.Both TMB and radical TFMP can combine HF and thus eliminate the detrimental effect of HF on cathode,while the TMB dragged on cathode thus takes a preferential oxidation and constructs a protective cathode interphase.On the other hand,LTFMP-TMB is preferentially reduced on anode and constructs a protective anode interphase.Consequently,a small amount of LTFMP-TMB(0.2%)in 1.0 M LiPF6in EC/DEC/EMC(3/2/5,wt%)results in a highly improved cyclability of LNMO/Graphite cell,with the capacity retention enhanced from 52%to 80%after 150 cycles at 0.5 C between 3.5 and 4.8 V.The as-developed strategy provides a model of designing electrolyte additives for improving cyclability of high voltage batteries.
基金financially supported by National Natural Science Foundation of China (22209133, 22272131, 21972111, 22211540712)Natural Science Foundation of Chongqing (CSTB2022NSCQ-MSX1411)+1 种基金Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and DevicesChongqing Key Laboratory for Advanced Materials and Technologies。
文摘Electrolytic aqueous zinc-manganese(Zn–Mn) batteries have the advantage of high discharge voltage and high capacity due to two-electron reactions. However, the pitfall of electrolytic Zn–Mn batteries is the sluggish deposition reaction kinetics of manganese oxide during the charge process and short cycle life. We show that, incorporating ZnO electrolyte additive can form a neutral and highly viscous gel-like electrolyte and render a new form of electrolytic Zn–Mn batteries with significantly improved charging capabilities. Specifically, the ZnO gel-like electrolyte activates the zinc sulfate hydroxide hydrate assisted Mn^(2+) deposition reaction and induces phase and structure change of the deposited manganese oxide(Zn_(2)Mn_(3)O_8·H_(2)O nanorods array), resulting in a significant enhancement of the charge capability and discharge efficiency. The charge capacity increases to 2.5 mAh cm^(-2) after 1 h constant-voltage charging at 2.0 V vs. Zn/Zn^(2+), and the capacity can retain for up to 2000 cycles with negligible attenuation. This research lays the foundation for the advancement of electrolytic Zn–Mn batteries with enhanced charging capability.
基金fellowship support from the China Scholarship Council
文摘Anode-free Li-metal batteries are of significant interest to energy storage industries due to their intrinsically high energy.However,the accumulative Li dendrites and dead Li continuously consume active Li during cycling.That results in a short lifetime and low Coulombic efficiency of anode-free Li-metal batteries.Introducing effective electrolyte additives can improve the Li deposition homogeneity and solid electrolyte interphase(SEI)stability for anode-free Li-metal batteries.Herein,we reveal that introducing dual additives,composed of LiAsF6 and fluoroethylene carbonate,into a low-cost commercial carbonate electrolyte will boost the cycle life and average Coulombic efficiency of NMC‖Cu anode-free Li-metal batteries.The NMC‖Cu anode-free Li-metal batteries with the dual additives exhibit a capacity retention of about 75%after 50 cycles,much higher than those with bare electrolytes(35%).The average Coulombic efficiency of the NMC‖Cu anode-free Li-metal batteries with additives can maintain 98.3%over 100 cycles.In contrast,the average Coulombic efficiency without additives rapidly decline to 97%after only 50 cycles.In situ Raman measurements reveal that the prepared dual additives facilitate denser and smoother Li morphology during Li deposition.The dual additives significantly suppress the Li dendrite growth,enabling stable SEI formation on anode and cathode surfaces.Our results provide a broad view of developing low-cost and high-effective functional electrolytes for high-energy and long-life anode-free Li-metal batteries.
基金supported by the Postgraduate Research and Practice Innovation Program of Jiangsu Province (SJKY19_0460)the National Natural Science Foundation of China (Grant No.51979099 & 51774109)+2 种基金Natural Science Foundation of Jiangsu Province of China (Grant No.BK20191303)The Key Research and Development Project of Jiangsu Province of China (Grant No.BE2017148)Postgraduate Education Reform Project of Jiangsu Province (JGLX19_027)。
文摘The effect of adding a small amount of Ag on the microstructure evolution and superplastic properties of Mg-Y-Er-Zn(WEZ612) alloys was systematically studied.The basal texture of the refined WEZ612 alloy produced by equal channel angular pressing was altered to a non-basal structure upon the addition of Ag.Ag addition also refined the grain size and promoted the formation of a large number of nano-14H-long period stacking ordered phases.Using high-resolution transmission electron microscopy,many nano-precipitated phases were detected on the basal plane of the Mg-Y-Er-Zn-1Ag(WEZ612-1Ag) alloy,The nano-precipitated phases on the basal plane improved the thermal stability of the alloy,lowered the deformation activation energy(Q),and improved the stress sensitivity index(m).At 523 K with a strain rate of 10^(-2) s^(-1),the Q value of WEZ612 was higher than that of WEZ612-1Ag(299.14 and 128.5 kJ mol^(-1),respectively).In contrast,the m value of the WEZ612 alloy(0.16) was lower than that of the WEZ612-1Ag alloy(0.46).At 623 K with a tensile rate of 10^(-2) s^(-1),the WEZ612 and WEZ612-1Ag alloys were elongated by 182% and 495%,respectively,with the latter exhibiting high-strain-rate and low-temperature superplasticity.The improved superplasticity of the WEZ612-1Ag alloy is attributed to the nano-precipitated phases,which effectively limit the cavity extension during superplastic deformation.