X-ray computed tomography(CT),ultrasonography(US)and radionuclide scanning are important clinical methods for evaluating morphology of the kidney.These modalities are also applicable for estimating kidney function wit...X-ray computed tomography(CT),ultrasonography(US)and radionuclide scanning are important clinical methods for evaluating morphology of the kidney.These modalities are also applicable for estimating kidney function with time lapse analysis using proper contrastmedia as may be necessary.In the case of US,it can estimate kidney function based on the measurement of blood flow using the Doppler effect.Formerly,magnetic resonance imaging(MRI)was an inappropriate diagnostic imaging technique for abdominal organs because of their respiratory displacements.However,MRI is now actively used for kidney as well as liver or other parenchymal organs,in tandem with the technological advances.Unlike unenhanced X-ray CT,"conventional"MRI can distinguish the border between cortex and medulla in T1 or T2 weighted images.It was known that the border blurred with decreasing kidney function.Moreover,several other particular imaging methods were introduced in recent years,and these could be called"functional"MRI.In this review,the following are discussed:functional MRI for chronic kidney disease,which include blood oxygenation level-dependent MRI for evaluation of hypoxia,diffusion-weighted imagingfor evaluation of fibrosis,diffusion tensor imaging for evaluation of microstructure,and arterial spin labeling to evaluate the amount of organ perfusion,accompanied with several related articles.The ultimate goal of functional MRI is to provide useful in vivo information repeatedly for daily medical treatment non-invasively.展开更多
Pre-kidney transplant cardiac screening has garnered particular attention from guideline committees as an approach to improving post-transplant success. Screening serves two major purposes: To more accurately inform t...Pre-kidney transplant cardiac screening has garnered particular attention from guideline committees as an approach to improving post-transplant success. Screening serves two major purposes: To more accurately inform transplant candidates of their risk for a cardiac event before and after the transplant, thereby informing decisions about proceeding with transplantation, and to guide pre-transplant management so that posttransplant success can be maximized. Transplant candidates on dialysis are more likely to be screened for coronary artery disease than those not being considered for transplantation. Thorough history and physical examination taking, resting electrocardiography and echocardiography, exercise stress testing, myocardial perfusion scintigraphy, dobutamine stress echocardiography, cardiac computed tomography, cardiac biomarker measurement, and cardiac magnetic resonance imaging all play contributory roles towards screening for cardiovascular disease before kidney transplantation. In this review, the importance of each of these screening procedures for both coronary artery disease and other forms of cardiac disease are discussed.展开更多
Gadolinium-based contrast agents(GBCAs)used in magnetic resonance imaging are vital in providing enhanced quality images,essential for diagnosis and treatment.Nephrogenic systemic fibrosis(NSF)with GBCAs has been a de...Gadolinium-based contrast agents(GBCAs)used in magnetic resonance imaging are vital in providing enhanced quality images,essential for diagnosis and treatment.Nephrogenic systemic fibrosis(NSF)with GBCAs has been a deterrent for the physician and has led to avoidance of these agents in patients with impaired kidney function.NSF is a progressive debilitating multisystem condition described classically in patients with renal insufficiency exposed to gadolinium contrast media.It is characterized by an induration and hardening of the skin.NSF is described to first involve the extremities and can imperceptibly involve internal organs.Lack of therapeutic interventions to treat NSF makes it more challenging and warrants deep insight into the pathogenesis,risk factors and treatment strategies.展开更多
Background An accelerated muscle wasting was the pivotal factor for protein-energy wasting in end stage renal disease. However, very few researches have examined the skeletal muscle quantity and quality in clinical pa...Background An accelerated muscle wasting was the pivotal factor for protein-energy wasting in end stage renal disease. However, very few researches have examined the skeletal muscle quantity and quality in clinical patients. This study investigated the muscle morphologic changes by magnetic resonance imaging (MRI) and analyzed the related factors in hemodialysis patients. Methods Fifty-eight patients receiving maintenance hemodialysis (HD) were investigated and 28 healthy adults with gender and age matched were used as controls (Control). Anthropometry, cytokine factors, and laboratory data were measured. The muscle and intermuscular adipose tissues (IMAT) were analyzed via a Thigh MRI. The bicep samples were observed after HE staining. Homeostatic model assessment of insulin resistance (HOMA-IR) was measured and their association with muscle wasting was analyzed. Results HD patients tended to have a lower protein diet, anthropometry data, and serum albumin, but the C reactive protein and interleukin-6 increased significantly. The MRI showed that HD patients had less muscle mass and a lower muscle/total ratio, but the fat/muscle and IMAT was higher when compared to the Control group. The muscle fiber showed atrophy and fat accumulation in the biceps samples come from the HD patients. Moreover, we found that the HD patients presented with a high level of plasma fasting insulin and increased HOMA-IR which negatively correlated with the muscle/ total ratio, but positively with the fat/muscle ratio. Conclusions Muscle wasting presented early before an obvious malnutrition condition emerged in HD patients. The main morphological change was muscle atrophy along with intermuscular lipid accumulation. Insulin resistance was associated with muscle wasting in dialysis patients.展开更多
文摘X-ray computed tomography(CT),ultrasonography(US)and radionuclide scanning are important clinical methods for evaluating morphology of the kidney.These modalities are also applicable for estimating kidney function with time lapse analysis using proper contrastmedia as may be necessary.In the case of US,it can estimate kidney function based on the measurement of blood flow using the Doppler effect.Formerly,magnetic resonance imaging(MRI)was an inappropriate diagnostic imaging technique for abdominal organs because of their respiratory displacements.However,MRI is now actively used for kidney as well as liver or other parenchymal organs,in tandem with the technological advances.Unlike unenhanced X-ray CT,"conventional"MRI can distinguish the border between cortex and medulla in T1 or T2 weighted images.It was known that the border blurred with decreasing kidney function.Moreover,several other particular imaging methods were introduced in recent years,and these could be called"functional"MRI.In this review,the following are discussed:functional MRI for chronic kidney disease,which include blood oxygenation level-dependent MRI for evaluation of hypoxia,diffusion-weighted imagingfor evaluation of fibrosis,diffusion tensor imaging for evaluation of microstructure,and arterial spin labeling to evaluate the amount of organ perfusion,accompanied with several related articles.The ultimate goal of functional MRI is to provide useful in vivo information repeatedly for daily medical treatment non-invasively.
文摘Pre-kidney transplant cardiac screening has garnered particular attention from guideline committees as an approach to improving post-transplant success. Screening serves two major purposes: To more accurately inform transplant candidates of their risk for a cardiac event before and after the transplant, thereby informing decisions about proceeding with transplantation, and to guide pre-transplant management so that posttransplant success can be maximized. Transplant candidates on dialysis are more likely to be screened for coronary artery disease than those not being considered for transplantation. Thorough history and physical examination taking, resting electrocardiography and echocardiography, exercise stress testing, myocardial perfusion scintigraphy, dobutamine stress echocardiography, cardiac computed tomography, cardiac biomarker measurement, and cardiac magnetic resonance imaging all play contributory roles towards screening for cardiovascular disease before kidney transplantation. In this review, the importance of each of these screening procedures for both coronary artery disease and other forms of cardiac disease are discussed.
文摘Gadolinium-based contrast agents(GBCAs)used in magnetic resonance imaging are vital in providing enhanced quality images,essential for diagnosis and treatment.Nephrogenic systemic fibrosis(NSF)with GBCAs has been a deterrent for the physician and has led to avoidance of these agents in patients with impaired kidney function.NSF is a progressive debilitating multisystem condition described classically in patients with renal insufficiency exposed to gadolinium contrast media.It is characterized by an induration and hardening of the skin.NSF is described to first involve the extremities and can imperceptibly involve internal organs.Lack of therapeutic interventions to treat NSF makes it more challenging and warrants deep insight into the pathogenesis,risk factors and treatment strategies.
文摘Background An accelerated muscle wasting was the pivotal factor for protein-energy wasting in end stage renal disease. However, very few researches have examined the skeletal muscle quantity and quality in clinical patients. This study investigated the muscle morphologic changes by magnetic resonance imaging (MRI) and analyzed the related factors in hemodialysis patients. Methods Fifty-eight patients receiving maintenance hemodialysis (HD) were investigated and 28 healthy adults with gender and age matched were used as controls (Control). Anthropometry, cytokine factors, and laboratory data were measured. The muscle and intermuscular adipose tissues (IMAT) were analyzed via a Thigh MRI. The bicep samples were observed after HE staining. Homeostatic model assessment of insulin resistance (HOMA-IR) was measured and their association with muscle wasting was analyzed. Results HD patients tended to have a lower protein diet, anthropometry data, and serum albumin, but the C reactive protein and interleukin-6 increased significantly. The MRI showed that HD patients had less muscle mass and a lower muscle/total ratio, but the fat/muscle and IMAT was higher when compared to the Control group. The muscle fiber showed atrophy and fat accumulation in the biceps samples come from the HD patients. Moreover, we found that the HD patients presented with a high level of plasma fasting insulin and increased HOMA-IR which negatively correlated with the muscle/ total ratio, but positively with the fat/muscle ratio. Conclusions Muscle wasting presented early before an obvious malnutrition condition emerged in HD patients. The main morphological change was muscle atrophy along with intermuscular lipid accumulation. Insulin resistance was associated with muscle wasting in dialysis patients.