Hypoxia off the Changjiang River Estuary has been the subject of much attention,yet systematic observations have been lacking,resulting in a lack of knowledge regarding its long-term change and drivers.By revisiting t...Hypoxia off the Changjiang River Estuary has been the subject of much attention,yet systematic observations have been lacking,resulting in a lack of knowledge regarding its long-term change and drivers.By revisiting the repeated surveys of dissolved oxygen(DO) and other relevant hydrographic parameters along the section from the Changjiang River Estuary to the Jeju-do in the summer from 1997 to 2014,rather different trends were revealed for the dual low-DO cores.The nearshore low-DO core,located close to the river mouth and relatively stable,shows that hypoxia has become more severe with the lowest DO descen ding at a rate of -0.07 mg/(L·a) and the thickness of low-DO zone rising at a rate of 0.43 m/a.The offshore core,centered around 40-m isobath but moving back and forth between 123.5°-125°E,shows large fluctuations in the minimum DO concentration,with the thickness of low-DO zone falling at a rate of -1.55 m/a.The probable factors affecting the minimum DO concentration in the two regions also vary.In the nearshore region,the decreasing minimum DO is driven by the increase in both stratification and primary productivity,with the enhanced extension of the Changjiang River Diluted Water(CDW) strengthening stratification.In the offshore region,the fluctuating trend of the minimum DO concentration indicates that both DO loss and DO supplement are distinct.The DO loss is primarily attributed to bottom apparent oxygen utilization caused by the organic matter decay and is also relevant to the advection of low-DO water from the nearshore region.The DO supplement is primarily due to weakened stratification.Our analysis also shows that the minimum DO concentration in the nearshore region was extremely low in 1998,2003,2007 and 2010,related to El Ni?o signal in these summers.展开更多
To study the stratified stability of a water column in the North Passage of the Yangtze River Estuary,a numerical model of the hydrodynamics of this estuary is established using the EFDC model.On the basis of EFDC res...To study the stratified stability of a water column in the North Passage of the Yangtze River Estuary,a numerical model of the hydrodynamics of this estuary is established using the EFDC model.On the basis of EFDC results,this paper derives and pro-vides the discriminative index of water body stability caused by salinity and analyzes the along-range variation in water body strati-fication stability in the North Passage of the Yangtze River Estuary and the periodic variation at a key location(bend area)based on the simulation results of the numerical model.This work shows that the water body in the bend area varies between mixed and strati-fied types,and the vertical average flow velocity has a good negative correlation with the differential velocity between the surface and bottom layers of the water body.The model simulation results validate the formulae for the stratified stability discriminant during spring tides.展开更多
Marine sediments collected from the Zhujiang(Pearl) River Estuary(ZRE) and South China Sea(SCS) were utilized to study the occurrence and spatial distribution of tetrabromobisphenol A(TBBPA) and hexabromocyclododecane...Marine sediments collected from the Zhujiang(Pearl) River Estuary(ZRE) and South China Sea(SCS) were utilized to study the occurrence and spatial distribution of tetrabromobisphenol A(TBBPA) and hexabromocyclododecane(HBCDD).The levels of TBBPA and HBCDD in sediments ranged from not detected(nd) to 6.14 ng/g dry weight(dw) and nd to 0.42 ng/g dw.TBBPA concentrations in marine sediments were substantially higher than HBCDD.The concentrations of TBBPA and HBCDD in the ZRE sediments were significantly greater than those in the SCS.α-HBCDD(48.7%) and γ-HBCDD(46.2%) were the two main diastereoisomers of HBCDD in sediments from the ZRE,with minor contribution of β-HBCDD(5.1%).HBCDD were only found in one sample from the northern SCS.The enantiomeric fraction of α-HBCDD in sediments from the ZRE was obviously greater than 0.5,indicating an accumulation of(+)-α-HBCDD.The enantiomers of HBCDD were not measured in sediments from the SCS.This work highlighted the environmental behaviors of TBBPA and HBCDD in marine sediments.展开更多
The sinking of phytoplankton is critical to organic matter transportation in the ocean and it is an essential process for the formation of coastal hypoxic zones.This study was based on a field investigation conducted ...The sinking of phytoplankton is critical to organic matter transportation in the ocean and it is an essential process for the formation of coastal hypoxic zones.This study was based on a field investigation conducted during the summer of 2022 in the Changjiang River(Yangtze River) Estuary(CJE) and its adjacent waters.The settling column method was employed to measure the sinking velocity(SV) of different size fractions of phytoplankton at the surface of the sea and to analyze their environmental control mechanisms.The findings reveal significant spatial variation in phytoplankton SV(-0.55-2.41 m/d) within the CJE.High-speed sinking was predominantly observed in phosphate-depleted regions beyond the CJE front.At the same time,an upward trend was more commonly observed in the phosphate-rich regions near the CJE mouth.The SV ranges for different sizefractionated phytoplankton,including micro-(>20 μm),nano-(2-20 μm),and picophytoplankton(0.7-2 μm),were-0.50-4.74 m/d,-1.04-1.59 m/d,and-1.24-1.65 m/d,respectively.Correlation analysis revealed a significant negative correlation between SV and dissolved inorganic phosphorus(DIP),implying that the influence of DIP contributes to SV.The variations in phytoplankton alkaline phosphatase activity suggested a significant increase in SV across all size fractions in the event of phosphorus limitation.Phytoplankton communities with limited photo synthetic capacity(maximum photochemical efficience,Fv/Fm <0.3) were found to have higher SV than that of communities with strong capacity,suggesting a link between sinking and alterations in physiological conditions due to phosphate depletion.The findings from the in situ phosphate enrichment experiments confirmed a marked decrease in SV following phosphate supplementation.These findings suggest that phosphorus limitation is the primary driver of elevated SV in the CJE.This study enhances the comprehension of the potential mechanisms underlying hypoxic zone formation in the CJE,providing novel insights into how nearshore eutrophication influences organic carbon migration.展开更多
Massive bodies of low-oxygen bottom waters are found in coastal areas worldwide,which are detrimental to coastal ecosystems.In summer 2020,the response of coastal hypoxia to extreme weather events,including a catastro...Massive bodies of low-oxygen bottom waters are found in coastal areas worldwide,which are detrimental to coastal ecosystems.In summer 2020,the response of coastal hypoxia to extreme weather events,including a catastrophic flooding,an extreme marine heatwave,and Typhoon Bavi,is investigated based on multiple satellite,four cruises,and mooring observations.The extensive fan-shaped hypoxia zone presents significant northward extension during July-September 2020,and is estimated as large as 13 000 km^(2) with rather low oxygen minimum(0.42 mg/L) during its peak in 28-30 August.This severe hypoxia is attributed to the persistent strong stratification,which is indicated by flood-induced larger amount of riverine freshwater input and subsequent marine heatwave off the Changjiang River Estuary.Moreover,the Typhoon Bavi has limited effect on the marine heatwave and coastal hypoxia in summer 2020.展开更多
A sediment core(YJK19-02)collected from the southern outlet of Hangzhou Bay near the Yongjiang River estuary in East China was analyzed for grain size,lignin,bulk elemental composition,stable carbon isotope,and rare e...A sediment core(YJK19-02)collected from the southern outlet of Hangzhou Bay near the Yongjiang River estuary in East China was analyzed for grain size,lignin,bulk elemental composition,stable carbon isotope,and rare earth elements(REEs)to determine the sources and diagenesis of sedimentary organic matter(OM)of the estuary and adjacent areas since the Late Pleistocene.δ^(13)C values(-24.80‰–-23.60‰),total organic carbon/total nitrogen(TOC/TN)molar ratios(8.00–12.14),and light rare earth element/heavy rare earth element ratios(LREE/HREE=8.34–8.91)revealed the predominance of terrestrial sources of OM,mainly from the Changjiang(Yangtze)River.The lignin parameters of syringyl/vanillyl(S/V=0.20–0.73)and cinnamyl/vanillyl(C/V=0.03–0.19)ratios indicate the predominance of nonwoody angiosperms,and the vanillic acid/vanillin ratios[(Ad/Al)_(V)=0.32–1.57]indicate medium to high degrees of lignin degradation.An increasing trend ofΛ(total lignin in mg/100-mg OC)values from ca.14500 a BP to ca.11000 a BP reflected the increase in temperature during the Late Pleistocene.However,a time lag effect of temperature on vegetation abundance was also revealed.The relatively higher and stableΛvalues correspond to the higher temperature during the mid-Holocene from ca.8500 a BP to ca.4500 a BP.Λvalues decreased from ca.4000 a BP to the present,corresponding to historical temperature fluctuations during this time.Our results show that the vegetation abundance in the Yongjiang River Basin since the Late Pleistocene was related to the temperature fluctuation duo to climate change.展开更多
The estuarine areas are under frequent influence from freshwater intrusion and ocean currents,in which zooplankton species are diversified and variable as they are sensitive to physio-chemical variations in water.Ther...The estuarine areas are under frequent influence from freshwater intrusion and ocean currents,in which zooplankton species are diversified and variable as they are sensitive to physio-chemical variations in water.Therefore,understanding the relationships between zooplankton and environmental factors help us know the water quality.To achieve co-existence with species in similar ecological group or habit,they could inevitably alter themselves to fit the ecology and adjust the function according to the competitive exclusion in ecological theory.However,information of the co-existence of dominant species in the Changjiang(Yangtze)River estuary(CRE)and adjacent waters remains scarce.We explored the relationships between dominant zooplankton and environmental factors in the study region in spring-summer from 2016 to 2020,involving particularly the composition of dominant species,ecological groups,their relationships with environmental factors,and co-existence of important species,using the non-multidimensional scale analysis(nMDS)method and redundancy analysis.Results show that Labidocera euchaeta and Tortanus vermiculus were dominant species in the study scope.The turnover rate of dominant zooplankton was greater(>50%)in spring while the species number was higher in summer.The dominant species were estuarine,offshore,and eurytopic based on the adaptation to salinity.In spring,the ecological groups were dominated by estuarine species,while in summer by estuarine and offshore species.In addition,the nMDS showed that the dominant species in the same ecological group were more dispersed and not prominently clustered;the dominant species were staggered among different ecological groups.The temperature,salinity,pH,dissolved oxygen,and chlorophyll a were the main environmental factors on the distribution of the dominant species in spring,while in summer were dissolved oxygen,temperature,salinity,and pH.The domination of medusae of Nemopsis bachei and Pleurobrachia globosa in zooplankton community in spring,and the continuous decrease in abundance of L.euchaeta reflected the effects of local climate change.The temperature and salinity changes in different years and the subsequent response of zooplankton reflected the influence of freshwater intrusion and/or ocean currents.Zooplankton in similar ecological habits exhibited the competitive exclusion in terms of co-existence.展开更多
An aerial photographic coverage acquired on two consecutive days in October 2021 with a ground resolution of 20 cm and a spectral resolution of 4 bands (red, green, blue and near infrared), allowed to distinguish most...An aerial photographic coverage acquired on two consecutive days in October 2021 with a ground resolution of 20 cm and a spectral resolution of 4 bands (red, green, blue and near infrared), allowed to distinguish most of the classes of interest present in the intertidal zone of the Sado estuary. We explored the possibilities of thematic classification in the powerful and complex software ArcGIS Pro;we presented the methodology used in a detailed way that allows others with minimal knowledge of GIS to reproduce the classification process without having to decipher the specifics of the software. The classification implemented used ground truth from four classes related to the macro-occupations of the area. In a first phase we explore the standard algorithms with object-based capabilities, like K-Nearest Neighbor, Random Trees Forest and Support Vector Machine, and in a second phase we proceed to test three deep learning classifiers that provide semantic segmentation: a U-Net configuration, a Pyramid Scene Parsing Network and DeepLabV3. The resulting classifications were quantitatively evaluated with a set of 500 control points in a test area of 37,500 × 12,500 pixels, using confusion matrices and resorting to Cohen’s kappa statistic and the concept of global accuracy, achieving a Kappa in the range [0.72, 0.81] and a global accuracy between 88.9% and 92.9%;the option U-Net had the most interesting results. This work establishes a methodology to provide a baseline for assessing future changes in the distribution of Sado estuarine habitats, which can be replicated in other wetland ecosystems for conservation and management purposes.展开更多
The aim of this study was to highlight the effect of tide on the variation of the physicochemical parameter in the Kienké estuary. Six (06) environmental variables were monitored at nine (09) stations with the ti...The aim of this study was to highlight the effect of tide on the variation of the physicochemical parameter in the Kienké estuary. Six (06) environmental variables were monitored at nine (09) stations with the time step of one hour from 7 am to 7 pm on 4th</sup> August 2019. The hovmuller analysis showed that salinity, conductivity, total dissolved solids, and pH values increased during the flood phase and decreased during the ebb phase while oxygen concentration decreased during the flood and increased during the ebb phase. The stratification parameter has shown that the influx of seawater during high tide shifts the Kienké estuary from a well-mixed to a partially mixed environment.展开更多
All Cameroonian estuarine systems, like the Kienke estuarine system (urban area of the port city of Kribi), are considered, as everywhere in the world, as unstable and vulnerable coastal ecosystems insofar as they are...All Cameroonian estuarine systems, like the Kienke estuarine system (urban area of the port city of Kribi), are considered, as everywhere in the world, as unstable and vulnerable coastal ecosystems insofar as they are influenced by anthropogenic activities (port facilities, industrial facilities), without forgetting climate change. The present work was initiated in order to assess the influence of the seasonal evolution of physico-chemical parameters on the dynamics of zooplankton in the estuarine system of the Kienke. A study to assess the influence of seasonal evolution of some physico-chemical parameters on Zooplankton population dynamics was conducted from June 2016 to August 2017 in the Kienke estuarine system (Kribi, South Cameroon Region). Samples were collected in five (05) sampling points at the lower stream, at the confluence and then at 100 meters from the bank at sea following a monthly frequency. The Kienke estuary was characterized by spatio-temporal variations of physico-chemical parameters. These parameters are high temperature, relatively high electrical conductivity and salinity, and a relatively basic hydrogen potential (pH). Nutrients (ammonia nitrogen, nitrates and orthophosphates) were relatively low in the Kienke estuary. The organic pollution index (OPI) indicated moderate to high water pollution. At the surface and at depth, during the long dry season (December to February), Zooplankton densities were very low in the Kienke estuarine system. But rather high during the main rainy season (August to October). The results show that 105 species of Zooplankton belonging to 46 families grouped into four orders were identified. At the surface, 52 species of Zooplankton belonging to 23 families and 4 orders were identified, while at depth, 53 species of Zooplankton belonging to 23 families were also identified. The most abundant group was the Copepods represented by the following species: <em>Tropocyclops confinis </em>Kiefer, 1930;<em>Mesocyclops </em>sp. Sars, 1914;<em>Macrocyclops</em> sp. Claus, 1893;<em>Thermocyclops</em> sp. Kiefer, 1929;<em>Parvocalaus elegans </em>Adronov, 1972 and <em>Clausocalanus</em> sp. Giesbrecht, 1888. Overall, there was a predominance of microcrustaceans (Cladocera and Copepoda) over rotifers. The results obtained in this work will be of capital importance for the elaboration of sustainable management policies for the estuary of the city of Kribi.展开更多
Understanding the changes of hydrodynamics in estuaries with respect to magnitude of sea level rise is important to understand the changes of transport process. Based on prediction of sea level rise over the 21st cent...Understanding the changes of hydrodynamics in estuaries with respect to magnitude of sea level rise is important to understand the changes of transport process. Based on prediction of sea level rise over the 21st century, the Zhujiang(Pearl River) Estuary was chosen as a prototype to study the responses of the estuary to potential sea level rise. The numerical model results show that the average salt content, saltwater intrusion distance, and stratification will increase as the sea level rises. The changes of these parameters have obvious seasonal variations. The salt content in the Lingdingyang shows more increase in April and October(the transition periods). The saltwater intrusion distance has larger increase during the low-flow periods than during the highflow periods in the Lingdingyang. The result is just the opposite in Modaomen. The stratification and its increase are larger during the low-flow periods than during the high-flow periods in Lingdingyang. The response results of transport processes to sea level rise demonstrate that:(1) The time of vertical transport has pronounced increase.The increased tidal range and currents would reinforce the vertical mixing, but the increased stratification would weaken the vertical exchange. The impact of stratification changes overwhelms the impact of tidal changes. It would be more difficult for the surface water to reach the bottom.(2) The lengthways estuarine circulation would be strengthened. Both the offshore surface residual current and inshore bottom residual current will be enhanced.The whole meridional resident flow along the transect of the Lingdingyang would be weakened. These phenomena are caused by the decrease of water surface slope(WWS) and the change of static pressure with the increase of water depth under sea level rise.展开更多
Riverine carbon flux is an important component of the global carbon cycle. The spatial and temporal variations of organic and inorganic carbon were examined during both dry and wet seasons in the Yellow River estuary....Riverine carbon flux is an important component of the global carbon cycle. The spatial and temporal variations of organic and inorganic carbon were examined during both dry and wet seasons in the Yellow River estuary. Concentrations of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in the Yellow River during dry seasons were higher than those during wet seasons. The effective concentrations of DOC (CDOC*) were higher than the observed DOC at zero salinity. This input of DOC in the Yellow River estuary was due to sediment desorption processes in low salinity regions. In contrast to DOC, the effective concen- trations of DIC were 10% lower than the DIC measured at freshwater end, and the loss of DIC was caused by CaCO3 precipitation in low salinity region, Particulate organic carbon (POC) and particulate inorganic carbon (PIC) contents of the particles stabilized to constant values (0.5%:t:0.05% and 1.8%--0.2%, respectively) within the turbidity maximum zone (TMZ) and showed no noticeable seasonal variations. A rapid drop of PIC and rise of POC occurred simultaneously outside the TMZ due to an intense dilution of riv- erine inorganic-rich particles being transported into a pool of aquatic organic-poor particles outside the TMZ. Annually, the Yellow River transported 6.95× 10^5 t of DIC, 0.64× 10^5 t of DOC, 78.58× 10^5 t of PIC and 2.29× 10^5 t of POC to the sea.展开更多
Based on the principle of conservative matter removal in estuary,a new method is proposed for estimating the ratio of sediment resuspension in estuaries with fine suspended sediments in the turbidity maximum zone(TMZ)...Based on the principle of conservative matter removal in estuary,a new method is proposed for estimating the ratio of sediment resuspension in estuaries with fine suspended sediments in the turbidity maximum zone(TMZ) of the Changjiang(Yangtze) estuary during 2005.Results show that there was a range of 18.7%±27.9% to 73.9%±22.5% per annum of total suspended particulate matter(SPM),with an average of 49.2%.Nearly half of the particulate matter in the TMZ originates from sediment resuspension.This indicates that sediment resuspension is one of the major mechanisms involved in formation of the TMZ.Compared with traditional method for calculating these ratios in the estuary,this new method evaluates the dynamic variation of SPM content carried by river runoff from the river mouth to the ocean.The new method produced more reliable results than the traditional one and could produce a better estimation of resuspension flux for particulate matter in estuaries.展开更多
The long-term spatiotemporal changes of surface biogenic elements in the Changjiang River Estuary and adjacent waters during the summer of 2008–2016 were analyzed in this study.The concentrations of dissolved inorgan...The long-term spatiotemporal changes of surface biogenic elements in the Changjiang River Estuary and adjacent waters during the summer of 2008–2016 were analyzed in this study.The concentrations of dissolved inorganic nitrogen(DIN),soluble reactive phosphate(PO_(4)^(3−))and silicate(SiO_(3)^(2−))were generally stable,with a slight decrease of DIN and PO_(4)^(3−),and a slight increase of SiO_(3)^(2−),which mainly occurred in the estuarine waters.The grey correlation analysis was carried out between biogenic elements and chlorophyll a(Chl-a).Results showed that compared with the absolute values of biogenic elements,the correlations between the concentration ratio of nitrogen to phosphorus(N/P),ratio of silicon to nitrogen(Si/N)and Chl-a were closer,indicating the important influence on phytoplankton by the structure of biogenic elements.The study area was generally in a state of potential P limitation,and could have potential impact on the phytoplankton community,triggering the shift of red tide dominant species from diatoms to dinoflagellates.展开更多
Estuarine projects can change local topography and influence water transport and saltwater intrusion.The Changjiang(Yangtze)River estuary is a multichannel estuary,and four major reclamation projects have been impleme...Estuarine projects can change local topography and influence water transport and saltwater intrusion.The Changjiang(Yangtze)River estuary is a multichannel estuary,and four major reclamation projects have been implemented in the Changjiang River estuary in recent years:the Xincun Shoal reclamation project(RP-XCS),the Qingcao Shoal reclamation project(RP-QCS),the Eastern Hengsha Shoal reclamation project(RP-EHS),and the Nanhui Shoal reclamation project(RP-NHS).The effects of the four reclamation projects and each project on the saltwater intrusion and water resources in the Changjiang River estuary were simulated in a 3D numerical model.Results show that for a multichannel estuary,local reclamation projects change the local topography and water diversion ratio(WDR)between channels and influence water and salt transport and freshwater utilization in the estuary.During spring tide,under the cumulative effect of the four reclamation projects,the salinity decreases by approximately 0.5in the upper reaches of the North Branch and increases by 0.5-1.0 in the middle and lower reaches of the North Branch.In the North Channel,the salinity decreases by approximately 0.5.In the North Passage,the salinity increases by 0.5-1.0.In the South Passage,the salinity increases by approximately 0.5 in the upper reaches and decreases by 0.2-0.5 on the north side of the middle and lower reaches.During neap tide,the cumulative effects of the four reclamation projects and the individual projects are similar to those during spring tide,but there are some differences.The effects of an individual reclamation project on WDR and saltwater intrusion during spring and neap tides are simulated and analyzed in detail.The cumulative effect of the four reclamation projects favors freshwater usage in the Changjiang River estuary.展开更多
The exchange flow structure was examined in the North Passage of Changjiang River Estuary,where a deep waterway project(DWP)was carried out to improve the navigability.Before the construction of the DWP,the friction e...The exchange flow structure was examined in the North Passage of Changjiang River Estuary,where a deep waterway project(DWP)was carried out to improve the navigability.Before the construction of the DWP,the friction effect played a significant role in shaping the transverse structure of the exchange flow.The turbulent eddy viscosity generated near the seabed can be transferred to the upper water column,which facilitated vertical momentum exchange.As a result,the landward inflow extended to–2 m below the water surface and the seaward outflow was concentrated on the shallow shoal on the southern side of the cross section.After the construction of the DWP,the turbulent mixing was suppressed as a result of density stratification.The friction felt by the water was constrained in the lower half of the water column and the vertical momentum exchange was reduced.Meanwhile,the channel became dynamically narrowed with a Kelvin number of 0.52.Therefore,the Coriolis played a minor role in shaping the transverse structure of the exchange flow.As a consequence,the exchange flow featured a vertically-sheared pattern,with outflow at the surface and inflow underneath.Additionally,the gravitational circulation was enhanced due to increase in along-channel density gradient and stratification.The exchange flow components associated with the lateral processes(residual currents induced by eddy viscosityshear covariance and lateral advective acceleration)were reduced,which suggests that lateral processes played a minor role in modifying the along-channel dynamics when the estuary becomes dynamically-narrowed.展开更多
Sewage introduction into rivers has altered the physical and chemical properties of waters and also the microbial metabolism. This study aimed to evaluate the Escherichia coli and nutrient concentrations in the Maratu...Sewage introduction into rivers has altered the physical and chemical properties of waters and also the microbial metabolism. This study aimed to evaluate the Escherichia coli and nutrient concentrations in the Maratuãand Crumaú rivers (Santos Estuary, Brazil) during two periods with distinct magnitudes of freshwater runoff, verifying possible relation of abiotic changes with the microbial metabolism. Water sampling was performed in October/2012 (dry season) and January/2013 (rainy season) at two points in the Crumaú river (upstream and downstream zone) and one in the Maratuãriver (downstream zone). The water subsamples were obtained for E. coli and nutrient analyses while the velocity of water flow, water level, temperature, salinity, and dissolved oxygen were measured in situ. The E. coli concentrations were under the detection limit in the Maratuãdownstream during the dry season reaching a maximum value (1.47 × 10<sup>4</sup> CFU/100mL) in the Crumaú upstream during the rainy season. E. coli presented strong positive correlation with nutrients (ammoniacal-N and phosphate), evidencing the sewage source in the Crumaú upstream shown by this association. In both periods, the low oxygen saturation (100 μmol·L<sup>-1</sup>) indicated considerable predominance of heterotrophic metabolism in the Crumaú upstream. The low dissolved oxygen values in Crumaú River are corroborated to show a low self-depuration capacity in the rainy period due to maintenance of high nutrient and E. coli at two points in the Crumaú river (upstream and downstream zone) and one in the Maratuãriver (downstream zone). Besides, these results evidenced that the tendency of the metabolism changed from autotrophic to heterotrophic under high river flow events at this studied estuarine sector located at Santos estuarine complex.展开更多
Subterranean estuaries,i.e.,the mixing zone between terrestrial groundwater and recirculated seawater,host a wide range of microbiota.Here,field campaigns were conducted at the mouth of the subterranean estuary at the...Subterranean estuaries,i.e.,the mixing zone between terrestrial groundwater and recirculated seawater,host a wide range of microbiota.Here,field campaigns were conducted at the mouth of the subterranean estuary at the Sanggou Bay(Shandong Province,China)over four consecutive seasons at a seepage face(0−20 cm depth).The diversity of benthic microbiome was characterized via 16S rRNA gene sequencing and metagenomics,combined with physic-chemical parameters,e.g.,organic carbon,total nitrogen and sulfate contents in sediments.During spring,the dominant species were assigned to the phylum Proteobacteria.Important opportunistic species was assigned to Acidobacteria,Actinobacteria and Bacteroidetes.The key components were identified to be species of the genera Pseudoalteromonas,Colwellia and Sphingobium,indicating the involvement of sediment microbiota in the degradation of sedimentary organic carbon,particularly that of pelagic origin,e.g.,phytoplankton detritus and bivalve pseudo-feces.During spring,the microbial community was statistically similar along the depth profiles and among the three sampled stations.Similar spatial distributions were obtained in the remaining seasons.By contrast,the dominant species assemblages varied significantly among seasons,with key genera being Thioprofundum and Nitrosopumilus during summer and autumn and Thioprofundum and Ilumatobacter during winter.Network analysis revealed a seasonal shift in benthic nitrogen and sulfur metabolism associated with these variations in microbial community composition.Overall,our findings suggested that macro elements derived from pelagic inputs,particularly detrital phytoplankton,shaped the microbial community compositions at the seepage face,resulting in significant seasonal variations,while the influence of terrestrial materials transported by groundwater on the sediment microbiota at the seepage face found to be minor.展开更多
In recent years,regional floods and typhoons have occurred in the Yangtze Estuary.Changing dynamic conditions and dramatic reduction of sediment discharge in the basin are affecting the dynamic equilibrium pattern of ...In recent years,regional floods and typhoons have occurred in the Yangtze Estuary.Changing dynamic conditions and dramatic reduction of sediment discharge in the basin are affecting the dynamic equilibrium pattern of the Yangtze Estuary.Based on the field measurement data and theoretical derivation,this paper analyzed the changing process of runoff-sediment discharge into the sea after the operation of the Three Gorges Project(TGP),and the tidal dynamics and sediment variation characteristics of the Yangtze Estuary.The erosion of South Branch mainly occurs in the channel below-10 m contour,and the riverbed volume below contours 0 m and-10 m has a good correlation with the sediment discharge of Datong Station in the previous year.On this basis,the ratio of the horizontal distance from the starting point to the section centroid below the average water level(B_c)and the water depth at the section centroid(H_c)was proposed to describe the change of the section shape.The relationships between the water-diverting ratio,the sediment-diverting ratio and the water-diverting angle,the conditions of runoff and sediment discharge from the upper reach and the characteristics of the riverway section were established,and the theoretical calculation equations of the water-diverting ratio,the sediment-diverting ratio and the diverting angle of each bifurcation were also established.展开更多
In the last two decades,the Yangtze Estuary has undergone significant changes under the influence of reduced sediment inflow and estuary engineering.This study investigates the influence of floods and typhoons on sedi...In the last two decades,the Yangtze Estuary has undergone significant changes under the influence of reduced sediment inflow and estuary engineering.This study investigates the influence of floods and typhoons on sediment concentration and the morphological evolution of shoals and channels in the Yangtze Estuary.The analysis is conducted through the utilization of topographic data measured pre-and post-flood events and observations of hydro-sedimentary changes during typhoons.By using a generalized estuary mathematical model,this study examines the interplay between varying tidal ranges,tidal divisions,runoff volumes,and regulation projects on the erosion and deposition of shoals and channels in bifurcated estuaries.The results show that due to the implementation of river and waterway regulation projects,the impact of the 2020 flood on the main channel and shoal was significantly less than that of the1998 flood.The swing amplitude of the South Branch main channel decreased.However,local river sections such as the Southern Waterway of Baimao Shoal exhibited erosion.During typhoons,sediment concentration in the 20 cm above the bottom increased significantly and was closely related to wave processes,with a weakened correlation to tidal dynamics.After typhoons,high shoals in South Passage above 0 m were silted up,while the terrain on one side of the tail of Jiuduan Shoal in the downstream deep-water area was generally scoured due to strong wave action.The generalized mathematical model of the bifurcated estuary revealed that M2 tidal component contributed most to the ero sion and deposition evolution of estuary shoals and channels,with floods exhibiting characteristics of sedime ntation on shoals and erosion on channels.With the implementation of a branch rectification project,branch resistance increased,diversion decreased,and the riverbed changed from pre-project erosion to post-project sedimentation,with an increase in erosion in non-project branches.展开更多
基金The National Key Research&Development Program of China under contract No.2023YFC3108003 in Project No.2023YFC3108000the National Natural Science Foundation of China under contract No.41876026+3 种基金the Scientific Research Fund of the Second Institute of Oceanography,Ministry of Natural Resources under contract No.YJJC2201the National Programme on Global Change and Air–Sea Interaction Phase Ⅱ under contract No.GASI-01-CJKthe Zhejiang Provincial Ten Thousand Talents Program under contract No.2020R52038the Project of State Key Laboratory of Satellite Ocean Environment Dynamics under contract No.SOEDZZ2105。
文摘Hypoxia off the Changjiang River Estuary has been the subject of much attention,yet systematic observations have been lacking,resulting in a lack of knowledge regarding its long-term change and drivers.By revisiting the repeated surveys of dissolved oxygen(DO) and other relevant hydrographic parameters along the section from the Changjiang River Estuary to the Jeju-do in the summer from 1997 to 2014,rather different trends were revealed for the dual low-DO cores.The nearshore low-DO core,located close to the river mouth and relatively stable,shows that hypoxia has become more severe with the lowest DO descen ding at a rate of -0.07 mg/(L·a) and the thickness of low-DO zone rising at a rate of 0.43 m/a.The offshore core,centered around 40-m isobath but moving back and forth between 123.5°-125°E,shows large fluctuations in the minimum DO concentration,with the thickness of low-DO zone falling at a rate of -1.55 m/a.The probable factors affecting the minimum DO concentration in the two regions also vary.In the nearshore region,the decreasing minimum DO is driven by the increase in both stratification and primary productivity,with the enhanced extension of the Changjiang River Diluted Water(CDW) strengthening stratification.In the offshore region,the fluctuating trend of the minimum DO concentration indicates that both DO loss and DO supplement are distinct.The DO loss is primarily attributed to bottom apparent oxygen utilization caused by the organic matter decay and is also relevant to the advection of low-DO water from the nearshore region.The DO supplement is primarily due to weakened stratification.Our analysis also shows that the minimum DO concentration in the nearshore region was extremely low in 1998,2003,2007 and 2010,related to El Ni?o signal in these summers.
基金supported by the National Natural Science Foundation of China(Nos.42176166,41776024).
文摘To study the stratified stability of a water column in the North Passage of the Yangtze River Estuary,a numerical model of the hydrodynamics of this estuary is established using the EFDC model.On the basis of EFDC results,this paper derives and pro-vides the discriminative index of water body stability caused by salinity and analyzes the along-range variation in water body strati-fication stability in the North Passage of the Yangtze River Estuary and the periodic variation at a key location(bend area)based on the simulation results of the numerical model.This work shows that the water body in the bend area varies between mixed and strati-fied types,and the vertical average flow velocity has a good negative correlation with the differential velocity between the surface and bottom layers of the water body.The model simulation results validate the formulae for the stratified stability discriminant during spring tides.
基金The Guangdong Basic and Applied Basic Research Foundation under contract Nos 2021B1515020040 and 2021A1515011526the National Natural Science Foundation of China under contract Nos 42277246 and U2244221+1 种基金the Hainan Provincial Natural Science Foundation of China under contract No.422CXTD533the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) under contract No.2019BT02H594。
文摘Marine sediments collected from the Zhujiang(Pearl) River Estuary(ZRE) and South China Sea(SCS) were utilized to study the occurrence and spatial distribution of tetrabromobisphenol A(TBBPA) and hexabromocyclododecane(HBCDD).The levels of TBBPA and HBCDD in sediments ranged from not detected(nd) to 6.14 ng/g dry weight(dw) and nd to 0.42 ng/g dw.TBBPA concentrations in marine sediments were substantially higher than HBCDD.The concentrations of TBBPA and HBCDD in the ZRE sediments were significantly greater than those in the SCS.α-HBCDD(48.7%) and γ-HBCDD(46.2%) were the two main diastereoisomers of HBCDD in sediments from the ZRE,with minor contribution of β-HBCDD(5.1%).HBCDD were only found in one sample from the northern SCS.The enantiomeric fraction of α-HBCDD in sediments from the ZRE was obviously greater than 0.5,indicating an accumulation of(+)-α-HBCDD.The enantiomers of HBCDD were not measured in sediments from the SCS.This work highlighted the environmental behaviors of TBBPA and HBCDD in marine sediments.
基金The National Programme on Global Change and Air-Sea Interaction (PhaseⅡ)—Hypoxia and Acidification Monitoring and Warning Project in the CE under contract No.GASI-01-CJKthe Science Foundation of Donghai Laboratory under contract No.DH-2022KF0215+3 种基金the Oceanic Interdisciplinary Program of Shanghai Jiao Tong UniversityScientific Research Fund of the Second Institute of Oceanography,MNR under contract No.SL2022ZD207the National Key R&D Program of China under contract No.2021YFC3101702the Long-term Observation and Research Plan in the Changjiang Estuary and Adjacent East China Sea (LORCE)Project under contract No.SZ2001。
文摘The sinking of phytoplankton is critical to organic matter transportation in the ocean and it is an essential process for the formation of coastal hypoxic zones.This study was based on a field investigation conducted during the summer of 2022 in the Changjiang River(Yangtze River) Estuary(CJE) and its adjacent waters.The settling column method was employed to measure the sinking velocity(SV) of different size fractions of phytoplankton at the surface of the sea and to analyze their environmental control mechanisms.The findings reveal significant spatial variation in phytoplankton SV(-0.55-2.41 m/d) within the CJE.High-speed sinking was predominantly observed in phosphate-depleted regions beyond the CJE front.At the same time,an upward trend was more commonly observed in the phosphate-rich regions near the CJE mouth.The SV ranges for different sizefractionated phytoplankton,including micro-(>20 μm),nano-(2-20 μm),and picophytoplankton(0.7-2 μm),were-0.50-4.74 m/d,-1.04-1.59 m/d,and-1.24-1.65 m/d,respectively.Correlation analysis revealed a significant negative correlation between SV and dissolved inorganic phosphorus(DIP),implying that the influence of DIP contributes to SV.The variations in phytoplankton alkaline phosphatase activity suggested a significant increase in SV across all size fractions in the event of phosphorus limitation.Phytoplankton communities with limited photo synthetic capacity(maximum photochemical efficience,Fv/Fm <0.3) were found to have higher SV than that of communities with strong capacity,suggesting a link between sinking and alterations in physiological conditions due to phosphate depletion.The findings from the in situ phosphate enrichment experiments confirmed a marked decrease in SV following phosphate supplementation.These findings suggest that phosphorus limitation is the primary driver of elevated SV in the CJE.This study enhances the comprehension of the potential mechanisms underlying hypoxic zone formation in the CJE,providing novel insights into how nearshore eutrophication influences organic carbon migration.
基金The National Natural Science Foundation of China under contract Nos U23A2033 and 42230404the National Program on Global Change and Air–Sea Interaction (PhaseⅡ) under contract No.GASI-01-CJK+5 种基金the Key Research&Development Program of Zhejiang Province under contract No.2022C03044the Joint Funds of the Zhejiang Provincial Natural Science Foundation of China under contract No.LZJMZ23D050001the Long Term Observation and Research Plan in the Changjiang River Estuary and the Adjacent East China Sea Project under contract No.SZZ2007the Project of State Key Laboratory of Satellite Ocean Environment Dynamics under contract No.SOEDZZ2105the Zhejiang Provincial Natural Science Foundation under contract No.LR16D060001the Zhejiang Provincial Ten Thousand Talents Plan under contract No.2020R52038。
文摘Massive bodies of low-oxygen bottom waters are found in coastal areas worldwide,which are detrimental to coastal ecosystems.In summer 2020,the response of coastal hypoxia to extreme weather events,including a catastrophic flooding,an extreme marine heatwave,and Typhoon Bavi,is investigated based on multiple satellite,four cruises,and mooring observations.The extensive fan-shaped hypoxia zone presents significant northward extension during July-September 2020,and is estimated as large as 13 000 km^(2) with rather low oxygen minimum(0.42 mg/L) during its peak in 28-30 August.This severe hypoxia is attributed to the persistent strong stratification,which is indicated by flood-induced larger amount of riverine freshwater input and subsequent marine heatwave off the Changjiang River Estuary.Moreover,the Typhoon Bavi has limited effect on the marine heatwave and coastal hypoxia in summer 2020.
基金Supported by the China Institute of Water Resources and Hydropower Research(No.K20231586)the Water Conservancy Bureau of Yunyang County(No.YYX24C00008)+1 种基金the Ecological Forestry Development Center of Lishui City(No.2021ZDZX03)the Asia-Pacific Network for Global Change Research(No.CRRP2020-06MY-Loh)。
文摘A sediment core(YJK19-02)collected from the southern outlet of Hangzhou Bay near the Yongjiang River estuary in East China was analyzed for grain size,lignin,bulk elemental composition,stable carbon isotope,and rare earth elements(REEs)to determine the sources and diagenesis of sedimentary organic matter(OM)of the estuary and adjacent areas since the Late Pleistocene.δ^(13)C values(-24.80‰–-23.60‰),total organic carbon/total nitrogen(TOC/TN)molar ratios(8.00–12.14),and light rare earth element/heavy rare earth element ratios(LREE/HREE=8.34–8.91)revealed the predominance of terrestrial sources of OM,mainly from the Changjiang(Yangtze)River.The lignin parameters of syringyl/vanillyl(S/V=0.20–0.73)and cinnamyl/vanillyl(C/V=0.03–0.19)ratios indicate the predominance of nonwoody angiosperms,and the vanillic acid/vanillin ratios[(Ad/Al)_(V)=0.32–1.57]indicate medium to high degrees of lignin degradation.An increasing trend ofΛ(total lignin in mg/100-mg OC)values from ca.14500 a BP to ca.11000 a BP reflected the increase in temperature during the Late Pleistocene.However,a time lag effect of temperature on vegetation abundance was also revealed.The relatively higher and stableΛvalues correspond to the higher temperature during the mid-Holocene from ca.8500 a BP to ca.4500 a BP.Λvalues decreased from ca.4000 a BP to the present,corresponding to historical temperature fluctuations during this time.Our results show that the vegetation abundance in the Yongjiang River Basin since the Late Pleistocene was related to the temperature fluctuation duo to climate change.
基金Supported by the Innovation Team Project of Ecological Environment Monitoring and Restoration of Fishery Waters in the East China Sea of the Chinese Academy of Fishery Sciences(No.2020TD14)the National Basic Research Program of China(973 Program)(No.2010CB429005)。
文摘The estuarine areas are under frequent influence from freshwater intrusion and ocean currents,in which zooplankton species are diversified and variable as they are sensitive to physio-chemical variations in water.Therefore,understanding the relationships between zooplankton and environmental factors help us know the water quality.To achieve co-existence with species in similar ecological group or habit,they could inevitably alter themselves to fit the ecology and adjust the function according to the competitive exclusion in ecological theory.However,information of the co-existence of dominant species in the Changjiang(Yangtze)River estuary(CRE)and adjacent waters remains scarce.We explored the relationships between dominant zooplankton and environmental factors in the study region in spring-summer from 2016 to 2020,involving particularly the composition of dominant species,ecological groups,their relationships with environmental factors,and co-existence of important species,using the non-multidimensional scale analysis(nMDS)method and redundancy analysis.Results show that Labidocera euchaeta and Tortanus vermiculus were dominant species in the study scope.The turnover rate of dominant zooplankton was greater(>50%)in spring while the species number was higher in summer.The dominant species were estuarine,offshore,and eurytopic based on the adaptation to salinity.In spring,the ecological groups were dominated by estuarine species,while in summer by estuarine and offshore species.In addition,the nMDS showed that the dominant species in the same ecological group were more dispersed and not prominently clustered;the dominant species were staggered among different ecological groups.The temperature,salinity,pH,dissolved oxygen,and chlorophyll a were the main environmental factors on the distribution of the dominant species in spring,while in summer were dissolved oxygen,temperature,salinity,and pH.The domination of medusae of Nemopsis bachei and Pleurobrachia globosa in zooplankton community in spring,and the continuous decrease in abundance of L.euchaeta reflected the effects of local climate change.The temperature and salinity changes in different years and the subsequent response of zooplankton reflected the influence of freshwater intrusion and/or ocean currents.Zooplankton in similar ecological habits exhibited the competitive exclusion in terms of co-existence.
文摘An aerial photographic coverage acquired on two consecutive days in October 2021 with a ground resolution of 20 cm and a spectral resolution of 4 bands (red, green, blue and near infrared), allowed to distinguish most of the classes of interest present in the intertidal zone of the Sado estuary. We explored the possibilities of thematic classification in the powerful and complex software ArcGIS Pro;we presented the methodology used in a detailed way that allows others with minimal knowledge of GIS to reproduce the classification process without having to decipher the specifics of the software. The classification implemented used ground truth from four classes related to the macro-occupations of the area. In a first phase we explore the standard algorithms with object-based capabilities, like K-Nearest Neighbor, Random Trees Forest and Support Vector Machine, and in a second phase we proceed to test three deep learning classifiers that provide semantic segmentation: a U-Net configuration, a Pyramid Scene Parsing Network and DeepLabV3. The resulting classifications were quantitatively evaluated with a set of 500 control points in a test area of 37,500 × 12,500 pixels, using confusion matrices and resorting to Cohen’s kappa statistic and the concept of global accuracy, achieving a Kappa in the range [0.72, 0.81] and a global accuracy between 88.9% and 92.9%;the option U-Net had the most interesting results. This work establishes a methodology to provide a baseline for assessing future changes in the distribution of Sado estuarine habitats, which can be replicated in other wetland ecosystems for conservation and management purposes.
文摘The aim of this study was to highlight the effect of tide on the variation of the physicochemical parameter in the Kienké estuary. Six (06) environmental variables were monitored at nine (09) stations with the time step of one hour from 7 am to 7 pm on 4th</sup> August 2019. The hovmuller analysis showed that salinity, conductivity, total dissolved solids, and pH values increased during the flood phase and decreased during the ebb phase while oxygen concentration decreased during the flood and increased during the ebb phase. The stratification parameter has shown that the influx of seawater during high tide shifts the Kienké estuary from a well-mixed to a partially mixed environment.
文摘All Cameroonian estuarine systems, like the Kienke estuarine system (urban area of the port city of Kribi), are considered, as everywhere in the world, as unstable and vulnerable coastal ecosystems insofar as they are influenced by anthropogenic activities (port facilities, industrial facilities), without forgetting climate change. The present work was initiated in order to assess the influence of the seasonal evolution of physico-chemical parameters on the dynamics of zooplankton in the estuarine system of the Kienke. A study to assess the influence of seasonal evolution of some physico-chemical parameters on Zooplankton population dynamics was conducted from June 2016 to August 2017 in the Kienke estuarine system (Kribi, South Cameroon Region). Samples were collected in five (05) sampling points at the lower stream, at the confluence and then at 100 meters from the bank at sea following a monthly frequency. The Kienke estuary was characterized by spatio-temporal variations of physico-chemical parameters. These parameters are high temperature, relatively high electrical conductivity and salinity, and a relatively basic hydrogen potential (pH). Nutrients (ammonia nitrogen, nitrates and orthophosphates) were relatively low in the Kienke estuary. The organic pollution index (OPI) indicated moderate to high water pollution. At the surface and at depth, during the long dry season (December to February), Zooplankton densities were very low in the Kienke estuarine system. But rather high during the main rainy season (August to October). The results show that 105 species of Zooplankton belonging to 46 families grouped into four orders were identified. At the surface, 52 species of Zooplankton belonging to 23 families and 4 orders were identified, while at depth, 53 species of Zooplankton belonging to 23 families were also identified. The most abundant group was the Copepods represented by the following species: <em>Tropocyclops confinis </em>Kiefer, 1930;<em>Mesocyclops </em>sp. Sars, 1914;<em>Macrocyclops</em> sp. Claus, 1893;<em>Thermocyclops</em> sp. Kiefer, 1929;<em>Parvocalaus elegans </em>Adronov, 1972 and <em>Clausocalanus</em> sp. Giesbrecht, 1888. Overall, there was a predominance of microcrustaceans (Cladocera and Copepoda) over rotifers. The results obtained in this work will be of capital importance for the elaboration of sustainable management policies for the estuary of the city of Kribi.
基金The National Natural Science Foundation of China under contract No.51409286the Scientific Research Innovation Project of Jiangsu Province Ordinary University Graduate Student under contract No.CXZZ12_0223the Open Fund Project of Zhujiang River Water Resources Commission of the Zhujiang River Water Conservancy Science Research Institute under contract No.[2013]KJ02
文摘Understanding the changes of hydrodynamics in estuaries with respect to magnitude of sea level rise is important to understand the changes of transport process. Based on prediction of sea level rise over the 21st century, the Zhujiang(Pearl River) Estuary was chosen as a prototype to study the responses of the estuary to potential sea level rise. The numerical model results show that the average salt content, saltwater intrusion distance, and stratification will increase as the sea level rises. The changes of these parameters have obvious seasonal variations. The salt content in the Lingdingyang shows more increase in April and October(the transition periods). The saltwater intrusion distance has larger increase during the low-flow periods than during the highflow periods in the Lingdingyang. The result is just the opposite in Modaomen. The stratification and its increase are larger during the low-flow periods than during the high-flow periods in Lingdingyang. The response results of transport processes to sea level rise demonstrate that:(1) The time of vertical transport has pronounced increase.The increased tidal range and currents would reinforce the vertical mixing, but the increased stratification would weaken the vertical exchange. The impact of stratification changes overwhelms the impact of tidal changes. It would be more difficult for the surface water to reach the bottom.(2) The lengthways estuarine circulation would be strengthened. Both the offshore surface residual current and inshore bottom residual current will be enhanced.The whole meridional resident flow along the transect of the Lingdingyang would be weakened. These phenomena are caused by the decrease of water surface slope(WWS) and the change of static pressure with the increase of water depth under sea level rise.
基金supported by the National Basic Research Program of China (No. 2002CB412504)
文摘Riverine carbon flux is an important component of the global carbon cycle. The spatial and temporal variations of organic and inorganic carbon were examined during both dry and wet seasons in the Yellow River estuary. Concentrations of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in the Yellow River during dry seasons were higher than those during wet seasons. The effective concentrations of DOC (CDOC*) were higher than the observed DOC at zero salinity. This input of DOC in the Yellow River estuary was due to sediment desorption processes in low salinity regions. In contrast to DOC, the effective concen- trations of DIC were 10% lower than the DIC measured at freshwater end, and the loss of DIC was caused by CaCO3 precipitation in low salinity region, Particulate organic carbon (POC) and particulate inorganic carbon (PIC) contents of the particles stabilized to constant values (0.5%:t:0.05% and 1.8%--0.2%, respectively) within the turbidity maximum zone (TMZ) and showed no noticeable seasonal variations. A rapid drop of PIC and rise of POC occurred simultaneously outside the TMZ due to an intense dilution of riv- erine inorganic-rich particles being transported into a pool of aquatic organic-poor particles outside the TMZ. Annually, the Yellow River transported 6.95× 10^5 t of DIC, 0.64× 10^5 t of DOC, 78.58× 10^5 t of PIC and 2.29× 10^5 t of POC to the sea.
基金Supported by National Natural Science Foundation of China for Creative Research Groups(No.41121064) and NSFC(No.41176138)the Program from Three Gorges Engineering Construction Committee of the State Council,China(No.SX2004-010)
文摘Based on the principle of conservative matter removal in estuary,a new method is proposed for estimating the ratio of sediment resuspension in estuaries with fine suspended sediments in the turbidity maximum zone(TMZ) of the Changjiang(Yangtze) estuary during 2005.Results show that there was a range of 18.7%±27.9% to 73.9%±22.5% per annum of total suspended particulate matter(SPM),with an average of 49.2%.Nearly half of the particulate matter in the TMZ originates from sediment resuspension.This indicates that sediment resuspension is one of the major mechanisms involved in formation of the TMZ.Compared with traditional method for calculating these ratios in the estuary,this new method evaluates the dynamic variation of SPM content carried by river runoff from the river mouth to the ocean.The new method produced more reliable results than the traditional one and could produce a better estimation of resuspension flux for particulate matter in estuaries.
基金The National Research Program of China under contract No.2017YFC1405300.
文摘The long-term spatiotemporal changes of surface biogenic elements in the Changjiang River Estuary and adjacent waters during the summer of 2008–2016 were analyzed in this study.The concentrations of dissolved inorganic nitrogen(DIN),soluble reactive phosphate(PO_(4)^(3−))and silicate(SiO_(3)^(2−))were generally stable,with a slight decrease of DIN and PO_(4)^(3−),and a slight increase of SiO_(3)^(2−),which mainly occurred in the estuarine waters.The grey correlation analysis was carried out between biogenic elements and chlorophyll a(Chl-a).Results showed that compared with the absolute values of biogenic elements,the correlations between the concentration ratio of nitrogen to phosphorus(N/P),ratio of silicon to nitrogen(Si/N)and Chl-a were closer,indicating the important influence on phytoplankton by the structure of biogenic elements.The study area was generally in a state of potential P limitation,and could have potential impact on the phytoplankton community,triggering the shift of red tide dominant species from diatoms to dinoflagellates.
基金Supported by the Science and Technology Commission of Shanghai Municipality(No.21JC1402500)。
文摘Estuarine projects can change local topography and influence water transport and saltwater intrusion.The Changjiang(Yangtze)River estuary is a multichannel estuary,and four major reclamation projects have been implemented in the Changjiang River estuary in recent years:the Xincun Shoal reclamation project(RP-XCS),the Qingcao Shoal reclamation project(RP-QCS),the Eastern Hengsha Shoal reclamation project(RP-EHS),and the Nanhui Shoal reclamation project(RP-NHS).The effects of the four reclamation projects and each project on the saltwater intrusion and water resources in the Changjiang River estuary were simulated in a 3D numerical model.Results show that for a multichannel estuary,local reclamation projects change the local topography and water diversion ratio(WDR)between channels and influence water and salt transport and freshwater utilization in the estuary.During spring tide,under the cumulative effect of the four reclamation projects,the salinity decreases by approximately 0.5in the upper reaches of the North Branch and increases by 0.5-1.0 in the middle and lower reaches of the North Branch.In the North Channel,the salinity decreases by approximately 0.5.In the North Passage,the salinity increases by 0.5-1.0.In the South Passage,the salinity increases by approximately 0.5 in the upper reaches and decreases by 0.2-0.5 on the north side of the middle and lower reaches.During neap tide,the cumulative effects of the four reclamation projects and the individual projects are similar to those during spring tide,but there are some differences.The effects of an individual reclamation project on WDR and saltwater intrusion during spring and neap tides are simulated and analyzed in detail.The cumulative effect of the four reclamation projects favors freshwater usage in the Changjiang River estuary.
基金The National Natural Science Foundation of China under contract Nos 51761135021,41576098 and 41980851the Fundamental Research Funds for the Central University under contract No.19LGPY96
文摘The exchange flow structure was examined in the North Passage of Changjiang River Estuary,where a deep waterway project(DWP)was carried out to improve the navigability.Before the construction of the DWP,the friction effect played a significant role in shaping the transverse structure of the exchange flow.The turbulent eddy viscosity generated near the seabed can be transferred to the upper water column,which facilitated vertical momentum exchange.As a result,the landward inflow extended to–2 m below the water surface and the seaward outflow was concentrated on the shallow shoal on the southern side of the cross section.After the construction of the DWP,the turbulent mixing was suppressed as a result of density stratification.The friction felt by the water was constrained in the lower half of the water column and the vertical momentum exchange was reduced.Meanwhile,the channel became dynamically narrowed with a Kelvin number of 0.52.Therefore,the Coriolis played a minor role in shaping the transverse structure of the exchange flow.As a consequence,the exchange flow featured a vertically-sheared pattern,with outflow at the surface and inflow underneath.Additionally,the gravitational circulation was enhanced due to increase in along-channel density gradient and stratification.The exchange flow components associated with the lateral processes(residual currents induced by eddy viscosityshear covariance and lateral advective acceleration)were reduced,which suggests that lateral processes played a minor role in modifying the along-channel dynamics when the estuary becomes dynamically-narrowed.
文摘Sewage introduction into rivers has altered the physical and chemical properties of waters and also the microbial metabolism. This study aimed to evaluate the Escherichia coli and nutrient concentrations in the Maratuãand Crumaú rivers (Santos Estuary, Brazil) during two periods with distinct magnitudes of freshwater runoff, verifying possible relation of abiotic changes with the microbial metabolism. Water sampling was performed in October/2012 (dry season) and January/2013 (rainy season) at two points in the Crumaú river (upstream and downstream zone) and one in the Maratuãriver (downstream zone). The water subsamples were obtained for E. coli and nutrient analyses while the velocity of water flow, water level, temperature, salinity, and dissolved oxygen were measured in situ. The E. coli concentrations were under the detection limit in the Maratuãdownstream during the dry season reaching a maximum value (1.47 × 10<sup>4</sup> CFU/100mL) in the Crumaú upstream during the rainy season. E. coli presented strong positive correlation with nutrients (ammoniacal-N and phosphate), evidencing the sewage source in the Crumaú upstream shown by this association. In both periods, the low oxygen saturation (100 μmol·L<sup>-1</sup>) indicated considerable predominance of heterotrophic metabolism in the Crumaú upstream. The low dissolved oxygen values in Crumaú River are corroborated to show a low self-depuration capacity in the rainy period due to maintenance of high nutrient and E. coli at two points in the Crumaú river (upstream and downstream zone) and one in the Maratuãriver (downstream zone). Besides, these results evidenced that the tendency of the metabolism changed from autotrophic to heterotrophic under high river flow events at this studied estuarine sector located at Santos estuarine complex.
基金The National Natural Science Foundation of China under contract No.41706081.
文摘Subterranean estuaries,i.e.,the mixing zone between terrestrial groundwater and recirculated seawater,host a wide range of microbiota.Here,field campaigns were conducted at the mouth of the subterranean estuary at the Sanggou Bay(Shandong Province,China)over four consecutive seasons at a seepage face(0−20 cm depth).The diversity of benthic microbiome was characterized via 16S rRNA gene sequencing and metagenomics,combined with physic-chemical parameters,e.g.,organic carbon,total nitrogen and sulfate contents in sediments.During spring,the dominant species were assigned to the phylum Proteobacteria.Important opportunistic species was assigned to Acidobacteria,Actinobacteria and Bacteroidetes.The key components were identified to be species of the genera Pseudoalteromonas,Colwellia and Sphingobium,indicating the involvement of sediment microbiota in the degradation of sedimentary organic carbon,particularly that of pelagic origin,e.g.,phytoplankton detritus and bivalve pseudo-feces.During spring,the microbial community was statistically similar along the depth profiles and among the three sampled stations.Similar spatial distributions were obtained in the remaining seasons.By contrast,the dominant species assemblages varied significantly among seasons,with key genera being Thioprofundum and Nitrosopumilus during summer and autumn and Thioprofundum and Ilumatobacter during winter.Network analysis revealed a seasonal shift in benthic nitrogen and sulfur metabolism associated with these variations in microbial community composition.Overall,our findings suggested that macro elements derived from pelagic inputs,particularly detrital phytoplankton,shaped the microbial community compositions at the seepage face,resulting in significant seasonal variations,while the influence of terrestrial materials transported by groundwater on the sediment microbiota at the seepage face found to be minor.
基金financially supported by the Key Laboratory of Estuarine&Coastal Engineering,Ministry of Transport Open Research Program (Grant No.KLECE202001)CRSRI Open Research Program (Grant No.CKWV20221007/KY)+4 种基金the National Natural Science Foundation of China (Grant No.51979172)Jiangsu Provincial Water Conservancy Technology Project (Grant Nos.2020002,2021025,and 2021029)Fundamental Research Funds for Central Public Welfare Research Institutes (Y223002)Innovation Team Project of Estuarine and Coastal Protection and Management (Grant No.Y220013)the Major Scientific Projects of the Ministry of Water Resources (Grant No.SKS-2022087)。
文摘In recent years,regional floods and typhoons have occurred in the Yangtze Estuary.Changing dynamic conditions and dramatic reduction of sediment discharge in the basin are affecting the dynamic equilibrium pattern of the Yangtze Estuary.Based on the field measurement data and theoretical derivation,this paper analyzed the changing process of runoff-sediment discharge into the sea after the operation of the Three Gorges Project(TGP),and the tidal dynamics and sediment variation characteristics of the Yangtze Estuary.The erosion of South Branch mainly occurs in the channel below-10 m contour,and the riverbed volume below contours 0 m and-10 m has a good correlation with the sediment discharge of Datong Station in the previous year.On this basis,the ratio of the horizontal distance from the starting point to the section centroid below the average water level(B_c)and the water depth at the section centroid(H_c)was proposed to describe the change of the section shape.The relationships between the water-diverting ratio,the sediment-diverting ratio and the water-diverting angle,the conditions of runoff and sediment discharge from the upper reach and the characteristics of the riverway section were established,and the theoretical calculation equations of the water-diverting ratio,the sediment-diverting ratio and the diverting angle of each bifurcation were also established.
基金financially supported by the CRSRI Open Research Program (Grant No.CKWV20221007/KY)the National Natural Science Foundation of China (Grant No.51979172)+3 种基金Jiangsu Provincial Water Conservancy Technology Project (Grant Nos.2020002,2021025,and 2021029)Fundamental Research Funds for Central Public Welfare Research Institutes (Y223002)Innovation Team Project of Estuarine and Coastal Protection and Management (Grant No.Y220013)the Major Scientific Projects of the Ministry of Water Resources (Grant No.SKS-2022087)。
文摘In the last two decades,the Yangtze Estuary has undergone significant changes under the influence of reduced sediment inflow and estuary engineering.This study investigates the influence of floods and typhoons on sediment concentration and the morphological evolution of shoals and channels in the Yangtze Estuary.The analysis is conducted through the utilization of topographic data measured pre-and post-flood events and observations of hydro-sedimentary changes during typhoons.By using a generalized estuary mathematical model,this study examines the interplay between varying tidal ranges,tidal divisions,runoff volumes,and regulation projects on the erosion and deposition of shoals and channels in bifurcated estuaries.The results show that due to the implementation of river and waterway regulation projects,the impact of the 2020 flood on the main channel and shoal was significantly less than that of the1998 flood.The swing amplitude of the South Branch main channel decreased.However,local river sections such as the Southern Waterway of Baimao Shoal exhibited erosion.During typhoons,sediment concentration in the 20 cm above the bottom increased significantly and was closely related to wave processes,with a weakened correlation to tidal dynamics.After typhoons,high shoals in South Passage above 0 m were silted up,while the terrain on one side of the tail of Jiuduan Shoal in the downstream deep-water area was generally scoured due to strong wave action.The generalized mathematical model of the bifurcated estuary revealed that M2 tidal component contributed most to the ero sion and deposition evolution of estuary shoals and channels,with floods exhibiting characteristics of sedime ntation on shoals and erosion on channels.With the implementation of a branch rectification project,branch resistance increased,diversion decreased,and the riverbed changed from pre-project erosion to post-project sedimentation,with an increase in erosion in non-project branches.