Context: Antiretroviral therapy (ART) helps restore the health status of people living with HIV (PLHIV). Likewise, it increases the risk of overweight/obesity and related comorbidities among the recipients. In countri...Context: Antiretroviral therapy (ART) helps restore the health status of people living with HIV (PLHIV). Likewise, it increases the risk of overweight/obesity and related comorbidities among the recipients. In countries like Botswana where ±84% of PLHIV is on ART, the paucity of data comparing overweight/obesity between HIV-positive on ART and HIV-negative patients may impede clinical and policy decision-making. This study sought to estimate and compare: i) the prevalence of overweight/obesity between HIV-positive on ART and HIV-negative patients;ii) the prevalence of hypertension (HTN), diabetes mellitus (DM)/coronary heart disease (CHD) between HIV-positive patients on ART and HIV-negative patients attending same outpatient departments of general clinics in Gaborone, Botswana. Patients and Methods: Five hundred eighty-one (581) outpatients were recruited in four major clinics of Gaborone, Botswana, between June and July 2019;294 or 51% of them were HIV-negative and 287 or 49% were HIV-positive on ART. The prevalence of overweight/obesity and of HTN and DM/CHD were calculated and examined using stratified analysis. Subgroups were compared using Chi-square analysis with Yates correction or Fisher exact test and t-student test for continuous data. Results: Major findings after stratification of the study population by HIV status were: i) the prevalence of all categories of (BMI), including overweight/obesity, were comparable between HIV-negative-patients and HIV-positive. In fact, there were 24 (8.0%) cases of underweight among HIV-negative-Patients and 15(5%) cases among HIV-positive patients, p = 0.2;145 (49%) HIV-negative-patients and 128 (45%) HIV-positive, p = 0.07 cases of normal weight;72 (25%) HIV-negative-patients and 87 (30%) HIV-positive, p = 0.08, were overweight;53 (18%) HIV-negative-patients and 57 (20%) HIV-positive, p = 0.12, were obese;125 (43%) HIV-negative patients and 144 (50%) HIV-positive, p=0.06 were overweight/obese;ii) the prevalence of HTN and DM/CHD among HIV-positive-patients were significantly lower (p < 0.05) compared to HIV-negative patients: There were 32 (10.9%) cases of HTN among HIV-negative patients compared to 18 (6.3%) cases of HTN among HIV-positive patients, p = 0.001;32 (11%) cases of DM/CHD HIV-negative patients compared to 4 (1.4%) cases of DM/CHD among HIV-positive patients, p = 0.001. Conclusion: the prevalence of overweight/obesity observed between HIV-negative and HIV-positive patients may suggest that the two groups shared the same exposure factors. That HTN and DM/CHD prevalence was lower among HIV-positive compared to HIV-negative patients, is possibly due to interplay factors of ART, HIV or the host population. Further studies are, however, recommended for clarifications.展开更多
Relative positioning is one of the important techniques in collaborativerobotics, autonomous vehicles, and virtual/augmented reality (VR/AR)applications. Recently, ultra-wideband (UWB) has been utilized to calculatere...Relative positioning is one of the important techniques in collaborativerobotics, autonomous vehicles, and virtual/augmented reality (VR/AR)applications. Recently, ultra-wideband (UWB) has been utilized to calculaterelative position as it does not require a line of sight compared to a camerato calculate the range between two objects with centimeter-level accuracy.However, the single UWB range measurement cannot provide the relativeposition and attitude of any device in three dimensions (3D) because oflacking bearing information. In this paper, we have proposed a UWB-IMUfusion-based relative position system to provide accurate relative positionand attitude between wearable Internet of Things (IoT) devices in 3D. Weintroduce a distributed Euler angle antenna orientationwhich can be equippedwith the mobile structure to enable relative positioning. Moving average andmin-max removing preprocessing filters are introduced to reduce the standarddeviation. The standard multilateration method is modified to calculate therelative position between mobile structures. We combine UWB and IMUmeasurements in a probabilistic framework that enables users to calculatethe relative position between two nodes with less error. We have carried outdifferent experiments to illustrate the advantages of fusing IMU and UWBranges for relative positioning systems. We have achieved a mean accuracy of0.31m for 3D relative positioning in indoor line of sight conditions.展开更多
The study presents sampling interval impacts on variance components of the epoch-wise residual errors in relative GPS positioning. In the variance components estimation process, the 2-way nested ANOVA method was used....The study presents sampling interval impacts on variance components of the epoch-wise residual errors in relative GPS positioning. In the variance components estimation process, the 2-way nested ANOVA method was used. For that purpose, GPS observation data during four months at two permanent GPS stations, establishing a 40-km-long baseline as a part of the Montenegrin permanent network(Monte Pos), were used. The study results showed that there is no statistically significant impact of sampling interval changes on epoch-wise variance components related to the residual tropospheric and ionospheric delays(effect a) when it comes to such a baseline. However, it is not the case with epoch-wise variance components related to the interstation-distance-independent residual ‘far-field’ multipath effect(effect b). It turned out that the absolute values of relative differences of standard deviations of the effect a on the relative GPS coordinates(e, n and u) had maximum values 11.1%, 10.2% and 8.9%,respectively. Keeping the same order of presentation for the effect b, the values of 5.9%, 9.9% and 12.5%were obtained. In addition, absolute values of relative differences of standard deviations of horizontal and vertical position had maximum values of 3.8% and 7.7%, respectively.展开更多
Impact of satellite elevation cutoff angle and position dilution of precision(PDOP)mask change on epoch-wise variance components of unmodeled effects that accompany relative Global Positioning System(GPS)positioning i...Impact of satellite elevation cutoff angle and position dilution of precision(PDOP)mask change on epoch-wise variance components of unmodeled effects that accompany relative Global Positioning System(GPS)positioning is presented herein.Data used for this study refer to the winter and summer periods of the years with minimal(2008)and maximal(2013)solar activity.These data were collected every 30 s in static mode,at two permanent GPS stations located in Montenegro,establishing a mediumdistance(116-km-long)baseline with a height difference of approximately 760 m between its endpoints.The study showed that changing satellite elevation cutoff angle,with a fixed PDOP mask,affects epochwise two-way nested ANOVA estimates of variances related to the‘far-field’multipath(considered as the nested factor herein)and the combined unmodeled effect of tropospheric and ionospheric refraction(considered as the nesting factor herein).However,changing of PDOP mask,with a fixed satellite elevation cutoff angle,doesn’t affect epoch-wise two-way nested ANOVA estimate of variance of the combined unmodeled effect of tropospheric and ionospheric refraction,but,generally,affects the estimate of variance of the‘far-field’multipath(possibly mixed with a part of a‘shorter-term’ionospheric refraction),which is especially pronounced for the summer period.It should also be noted that there is a significant influence of satellite elevation cutoff angle change on both epoch-wise horizontal and vertical position accuracy,only for the summer period,especially in the presence of maximal solar activity,while there is no significant impact of PDOP mask change on epoch-wise positional accuracy.展开更多
Selecting the optimal reference satellite is an important component of high-precision relat/ve positioning because the reference satellite directly influences the strength of the normal equation. The reference satelli...Selecting the optimal reference satellite is an important component of high-precision relat/ve positioning because the reference satellite directly influences the strength of the normal equation. The reference satellite selection methods based on elevation and positional dilution of precision (PDOP) value were compared. Results show that all the above methods cannot select the optimal reference satellite. We introduce condition number of the design matrix in the reference satellite selection method to improve structure of the normal equation, because condition number can indicate the ill condition of the normal equation. The experimental results show that the new method can improve positioning accuracy and reliability in precise relative positioning.展开更多
To obtain the stable temperature field required for growing sapphire crystals, the influence of relative positions between RF coil and crucible on the performances of sapphires produced by edge-defined film-fed growth...To obtain the stable temperature field required for growing sapphire crystals, the influence of relative positions between RF coil and crucible on the performances of sapphires produced by edge-defined film-fed growth(EFG) technique was investigated. For comparison, the crucible was located at the top(case A) and the middle(case B) of the RF coil, respectively. Furthermore, the lattice integrities were studied by the double-crystal X-ray diffraction, and the dislocations were observed under the optical microscope and atomic force microscope after corroding in molten KOH at 390 ℃. The crystals in case B exhibit better lattice integrity with smaller full width at half maximum of 29.13 rad·s, while the value in case A is 45.17 rad·s. The morphologies of dislocation etch pits in both cases show typical triangular symmetry with smooth surfaces. However, the dislocation density of 2.8×104 cm-2 in case B is only half of that in case A, and the distribution is more uniform, compared to the U-shaper in case A.展开更多
Based on the 6-pole outer stator(armature winding-stator),the influence of inner(permanent magnet-stator)/outer stator pole ratio n(n=NIS/NOS),stator relative positions and rotor pole number combinations on electromag...Based on the 6-pole outer stator(armature winding-stator),the influence of inner(permanent magnet-stator)/outer stator pole ratio n(n=NIS/NOS),stator relative positions and rotor pole number combinations on electromagnetic performance of partitioned stator switched flux permanent magnet(PM)machines(PS-SFPMMs)is investigated in this paper.Since the armature windings and PMs are located in two separated stators and PMs are stationary,PS-SFPMMs have high fault tolerance capabilities.To maximize the torque performance,the PM of inner stator pole should be aligned with outer stator pole when n is odd while the iron rib of inner stator pole should be aligned with outer stator pole when n is even.No matter what n is selected,the rotor pole number NR can be any integers except the phase number and its multiples.The analysis results indicate that the optimal NR is closed to(NIS+NOS)/2 and it is odd when n is odd while it is even when n is even.Meanwhile,symmetrical phase back-EMF waveform will be obtained when the ratio of Min(NOS,NIS)to the greatest common divisor of Min(NOS,NIS)and NR is even.Based on the optimal rotor pole numbers for 6-pole outer stator with different n and corresponding optimal relative position together with same rated copper loss,the average torque is improved by 18.4%,25.1%and 25.7%respectively in PS-SFPMMs with n equal to 2,3 and 4 when compared with PS-SFPMM with n equal to 1.The analyses are validated by experiment results of the prototype machine.展开更多
In the actual monitoring of deep hole displacement,the identification of slip surfaces is primarily based on abrupt changes observed in the inclinometric curve.In conventional identification methods,inclinometric curv...In the actual monitoring of deep hole displacement,the identification of slip surfaces is primarily based on abrupt changes observed in the inclinometric curve.In conventional identification methods,inclinometric curves exhibiting indications of sliding can be categorized into three types:B-type,D-type,and r-type.The position of the slip surface is typically determined by identifying the depth corresponding to the point of maximum displacement mutation.However,this method is sensitive to the interval of measurement points and the observation scale of the coordinate axes and suffers from unclear sliding surfaces and uncertain values.Based on the variation characteristics of these diagonal curves,we classified the landslide into three components:the sliding body,the sliding interval,and the immobile body.Moreover,three different generalization models were established to analyze the relationships between the curve form and the slip surface location based on different physical indicators such as displacement rate,relative displacement,and acceleration.The results show that the displacement rate curves of an r-type slope exhibit a clustering feature in the sliding interval,and by solving for the depth of discrete points within the step phase,it is possible to determine the location of the slip surface.On the other hand,D-type slopes have inflection points in the relative displacement curve located at the slip surface.The acceleration curves of B-type slopes exhibit clustering characteristics during the sliding interval,while the scattered acceleration data demonstrate wandering characteristics.Consequently,the slip surface location can be revealed by solving the depth corresponding to the maximum acceleration with cubic spline interpolation.The approach proposed in this paper was applied to the monitoring data of a landslide in Yunnan Province,China.The results indicate that our approach can accurately identify the slip surface location and enable computability of its position,thereby enhancing applicability and reliability of the deep-hole displacement monitoring data.展开更多
In the high-speed maglev system,accurate real-time information of the train position is essential forstable,safe and efficient train operation.To detect the relative position of the high-speed maglev trainfrom a refer...In the high-speed maglev system,accurate real-time information of the train position is essential forstable,safe and efficient train operation.To detect the relative position of the high-speed maglev trainfrom a reference position,a location method based on long stator slot detection was proposed.Besides,aprototype system has been successfully developed.The hardware structure of the system,as well as itsworking principle was described.Moreover,a subdivision algorithm for calculating the pole location anglesignal was elucidated.Experiments show that the proposed method is feasible.The technical indexes ofthe detection system satisfy the requirements of the vehicle operation control system.The relative positionsensing system can be put into practice.展开更多
An adaptive prescribed performance control scheme is proposed for the drag free satellite in the presence of actuator saturation and external disturbances.The relative translation and rotation dynamics between the tes...An adaptive prescribed performance control scheme is proposed for the drag free satellite in the presence of actuator saturation and external disturbances.The relative translation and rotation dynamics between the test mass and outer satellite are firstly derived.To guarantee prescribed performance bounds on the transient and steady control errors of relative states,a performance constrained control law is formulated with an error transformed function.In addition,the requirements to know the system parameters and the upper bound of the external disturbance in advance have been eliminated by adaptive updating technique.A command filter is concurrently used to overcome the problem of explosion of complexity inherent in the backstepping control design.Subsequently,a novel auxiliary system is constructed to compensate the adverse effects of the actuator saturation constrains.It is proved that all signals in the closed?loop system are ultimately bounded and prescribed performance of relative position and attitude control errors are guaranteed.Finally,numerical simulation results are given to demonstrate the effectiveness of the proposed approach.展开更多
Glycation is a non-enzymatic post-translational modification which assigns sugar molecule and residues to a peptide.It is a clinically important attribute to numerous age-related,metabolic,and chronic diseases such as...Glycation is a non-enzymatic post-translational modification which assigns sugar molecule and residues to a peptide.It is a clinically important attribute to numerous age-related,metabolic,and chronic diseases such as diabetes,Alzheimer’s,renal failure,etc.Identification of a non-enzymatic reaction are quite challenging in research.Manual identification in labs is a very costly and timeconsuming process.In this research,we developed an accurate,valid,and a robust model named as Gly-LysPred to differentiate the glycated sites from non-glycated sites.Comprehensive techniques using position relative features are used for feature extraction.An algorithm named as a random forest with some preprocessing techniques and feature engineering techniques was developed to train a computational model.Various types of testing techniques such as self-consistency testing,jackknife testing,and cross-validation testing are used to evaluate the model.The overall model’s accuracy was accomplished through self-consistency,jackknife,and cross-validation testing 100%,99.92%,and 99.88%with MCC 1.00,0.99,and 0.997 respectively.In this regard,a user-friendly webserver is also urbanized to accumulate the whole procedure.These features vectorization methods suggest that they can play a critical role in other web servers which are developed to classify lysine glycation.展开更多
After presenting weaknesses of several classic routing protocols applied in vehicular ad hoc networks (VANETs) by a qualitative comparison, this paper proposes a novel self-adaptive routing protocol, named ARPP. Wit...After presenting weaknesses of several classic routing protocols applied in vehicular ad hoc networks (VANETs) by a qualitative comparison, this paper proposes a novel self-adaptive routing protocol, named ARPP. With respect to the specific characteristics of VANETs, the proposed routing protocol adopts a dynamic topology establishment and time-varying control message sending mechanism. A direction-based forwarding strategy and a specific warning solution enhance the routing performance in ARPP. Simulation results show that the ARPP protocol outperforms the classic AODV in urban vehicle environment.展开更多
By using the finite element method and viscoelastic artificial boundary, a soil-structure interaction system is established to simulate the influence of surface buildings on the seismic response of subway structures. ...By using the finite element method and viscoelastic artificial boundary, a soil-structure interaction system is established to simulate the influence of surface buildings on the seismic response of subway structures. The conditions of different relative positions between ground building and subway structure are analyzed. The result~ indicate that when considering the existence of surface buildings, the relative story displacements and internal forces of subway structures are changed greatly. Further the influence of surface buildings on subway structure changes as the distance increases.展开更多
To achieve the satellite formation control and the succeed formation missions, we present a new stealthy method to determine the relative states between formation satellites. In this method, the combination of a CCD c...To achieve the satellite formation control and the succeed formation missions, we present a new stealthy method to determine the relative states between formation satellites. In this method, the combination of a CCD camera and laser radar is used as the relative measure sensors. To reduce electromagnetic radiation, the laser radar works intermittently to minimize the probability of being discovered. And an unscented Kalman filter (UKF) is applied to estimate the relative states. The observability of this method is analyzed. The validity and effectiveness of the method is demonstrated in a typical application of formation relative navigation.展开更多
Variations in plant traits are indicative of plant adaptations to forest environments,and studying their relationships with tree growth provides valuable insights into forest regeneration.The spatial arrangement of pl...Variations in plant traits are indicative of plant adaptations to forest environments,and studying their relationships with tree growth provides valuable insights into forest regeneration.The spatial arrangement of plant seeds within the forest litter or soil critically infuences the variations of root-leaf traits,thereby affecting the adaptive strategies of emerging seedlings.However,our current understanding of the impacts of individual root-leaf traits on seedling growth in different relative position,and whether these traits together affect growth,remains limited.This study focuses on the dominant tree species,Castanopsis kawakamii,within the Sanming C.kawakamii Nature Reserve of China.The present experiment aimed to examine the variations in root-leaf traits of seedling,focus on the relative positions of seeds within different layers:beneath or above the litter layer,or within the bare soil layer(without litter).Our fndings provided evidence supporting a coordinated relationship between root and leaf traits,wherein leaf traits varied in conjunction with root traits in the relative positions of seeds.Specifcally,we observed that seedlings exhibited higher values for specifc leaf area and average root diameter,while displaying lower root tissue density.The mixed model explained 86.1%of the variation in root-leaf traits,surpassing the variation explained by the relative positions.Furthermore,soil nitrogen acted as a mediator,regulating the relationship between seedling growth and root-leaf traits,specifcally leaf dry matter content and root tissue density.Therefore,future studies should consider artifcially manipulating tree species diversity based on root-leaf traits characteristics to promote forest recovery.展开更多
Urban heritage is a vital resource that connects communities to their local identity.Unplanned developments and rapid urbanisation often harm the authenticity of historic areas,disrupting the cultural fabric and alter...Urban heritage is a vital resource that connects communities to their local identity.Unplanned developments and rapid urbanisation often harm the authenticity of historic areas,disrupting the cultural fabric and altering their character.This study introduces the Relative Positive Impact Index(RPll),a novel technique for assessing the socio-cultural impacts of urban revitalisation.The significance of RPII lies in its ability to quantitatively evaluate the impacts on the cultural fabric and integrity of historic urban areas,which is crucial for sustainable urban development.The study's objective is to apply RPII in evaluating qualitative socio-cultural characteristics in historic urban areas,with a focus on four main criteria and 16 sub-criteria,in the case of the Kuttichira precinct.The methodology integrates the analysis of published literature,a quantitative survey mapping the stakeholders'perception,and qualitative insights.This approach facilitates an in-depth understanding of how urban revitalisation affects local socio-cultural dynamics,preserving the authenticity and character of historic areas.The study reveals that the revitalisation project in Kuttichira positively impacts the socio-cultural fabric of the area,maintaining cultural integrity and addressing social challenges.These findings offer valuable insights for sustainable urban development and policymaking in historic areas.The study recommends the application of RPll in other urban precincts for comparative analysis and further development of urban development practices,contributing to informed urban policy and planning decisions.展开更多
The paper introduces an electroencephalography(EEG) driven online position control scheme for a robot arm by utilizing motor imagery to activate and error related potential(ErrP) to stop the movement of the individual...The paper introduces an electroencephalography(EEG) driven online position control scheme for a robot arm by utilizing motor imagery to activate and error related potential(ErrP) to stop the movement of the individual links, following a fixed(pre-defined) order of link selection. The right(left)hand motor imagery is used to turn a link clockwise(counterclockwise) and foot imagery is used to move a link forward. The occurrence of ErrP here indicates that the link under motion crosses the visually fixed target position, which usually is a plane/line/point depending on the desired transition of the link across 3D planes/around 2D lines/along 2D lines respectively. The imagined task about individual link's movement is decoded by a classifier into three possible class labels: clockwise, counterclockwise and no movement in case of rotational movements and forward, backward and no movement in case of translational movements. One additional classifier is required to detect the occurrence of the ErrP signal, elicited due to visually inspired positional link error with reference to a geometrically selected target position. Wavelet coefficients and adaptive autoregressive parameters are extracted as features for motor imagery and ErrP signals respectively. Support vector machine classifiers are used to decode motor imagination and ErrP with high classification accuracy above 80%. The average time taken by the proposed scheme to decode and execute control intentions for the complete movement of three links of a robot is approximately33 seconds. The steady-state error and peak overshoot of the proposed controller are experimentally obtained as 1.1% and4.6% respectively.展开更多
For the improvement of accuracy and better fault-tolerant performance, a global position system (GPS)/vision navigation (VISNAV) integrated relative navigation and attitude determination approach is presented for ...For the improvement of accuracy and better fault-tolerant performance, a global position system (GPS)/vision navigation (VISNAV) integrated relative navigation and attitude determination approach is presented for ultra-close spacecraft formation flying. Onboard GPS and VISNAV system are adopted and a federal Kalman filter architecture is used for the total navigation system design. Simulation results indicate that the integrated system can provide a total improvement of relative navigation and attitude estimation performance in accuracy and fault-tolerance.展开更多
The thermodynamic properties of xanthone(XTH) and 135 polybrominated xanthones(PBXTHs) in the standard state have been calculated at the B3LYP/6-31G* level using Gaussian 03 program.The isodesmic reactions were d...The thermodynamic properties of xanthone(XTH) and 135 polybrominated xanthones(PBXTHs) in the standard state have been calculated at the B3LYP/6-31G* level using Gaussian 03 program.The isodesmic reactions were designed to calculate the standard enthalpy of formation(△fHθ) and standard free energy of formation(△fGθ) of PBXTH congeners.The relations of these thermodynamic parameters with the number and position of Br atom substitution(NPBS) were discussed,and it was found that there exist high correlation between thermodynamic parameters(entropy(Sθ),△fHθ and △fGθ) and NPBS.According to the relative magnitude of their △fGθ,the relative stability order of PBXTH congeners was theoretically proposed.The relative rate constants of formation reactions of PBXTH congeners were calculated,Moreover,the values of molar heat capacity at constant pressure(Cp,m) from 200 to 1000 K for PBXTH congeners were also calculated,and the temperature dependence relation of them was obtained,suggesting very good relationships between Cp,m and temperature(T,T^1 and T^2) for almost all PBXTH congeners.展开更多
文摘Context: Antiretroviral therapy (ART) helps restore the health status of people living with HIV (PLHIV). Likewise, it increases the risk of overweight/obesity and related comorbidities among the recipients. In countries like Botswana where ±84% of PLHIV is on ART, the paucity of data comparing overweight/obesity between HIV-positive on ART and HIV-negative patients may impede clinical and policy decision-making. This study sought to estimate and compare: i) the prevalence of overweight/obesity between HIV-positive on ART and HIV-negative patients;ii) the prevalence of hypertension (HTN), diabetes mellitus (DM)/coronary heart disease (CHD) between HIV-positive patients on ART and HIV-negative patients attending same outpatient departments of general clinics in Gaborone, Botswana. Patients and Methods: Five hundred eighty-one (581) outpatients were recruited in four major clinics of Gaborone, Botswana, between June and July 2019;294 or 51% of them were HIV-negative and 287 or 49% were HIV-positive on ART. The prevalence of overweight/obesity and of HTN and DM/CHD were calculated and examined using stratified analysis. Subgroups were compared using Chi-square analysis with Yates correction or Fisher exact test and t-student test for continuous data. Results: Major findings after stratification of the study population by HIV status were: i) the prevalence of all categories of (BMI), including overweight/obesity, were comparable between HIV-negative-patients and HIV-positive. In fact, there were 24 (8.0%) cases of underweight among HIV-negative-Patients and 15(5%) cases among HIV-positive patients, p = 0.2;145 (49%) HIV-negative-patients and 128 (45%) HIV-positive, p = 0.07 cases of normal weight;72 (25%) HIV-negative-patients and 87 (30%) HIV-positive, p = 0.08, were overweight;53 (18%) HIV-negative-patients and 57 (20%) HIV-positive, p = 0.12, were obese;125 (43%) HIV-negative patients and 144 (50%) HIV-positive, p=0.06 were overweight/obese;ii) the prevalence of HTN and DM/CHD among HIV-positive-patients were significantly lower (p < 0.05) compared to HIV-negative patients: There were 32 (10.9%) cases of HTN among HIV-negative patients compared to 18 (6.3%) cases of HTN among HIV-positive patients, p = 0.001;32 (11%) cases of DM/CHD HIV-negative patients compared to 4 (1.4%) cases of DM/CHD among HIV-positive patients, p = 0.001. Conclusion: the prevalence of overweight/obesity observed between HIV-negative and HIV-positive patients may suggest that the two groups shared the same exposure factors. That HTN and DM/CHD prevalence was lower among HIV-positive compared to HIV-negative patients, is possibly due to interplay factors of ART, HIV or the host population. Further studies are, however, recommended for clarifications.
基金supported by Samsung Advanced Institute of Technology and partly supported by the National Research Foundation of Korea (NRF)grant funded by the Korean government (MSIT) (2022R1F1A1063662).
文摘Relative positioning is one of the important techniques in collaborativerobotics, autonomous vehicles, and virtual/augmented reality (VR/AR)applications. Recently, ultra-wideband (UWB) has been utilized to calculaterelative position as it does not require a line of sight compared to a camerato calculate the range between two objects with centimeter-level accuracy.However, the single UWB range measurement cannot provide the relativeposition and attitude of any device in three dimensions (3D) because oflacking bearing information. In this paper, we have proposed a UWB-IMUfusion-based relative position system to provide accurate relative positionand attitude between wearable Internet of Things (IoT) devices in 3D. Weintroduce a distributed Euler angle antenna orientationwhich can be equippedwith the mobile structure to enable relative positioning. Moving average andmin-max removing preprocessing filters are introduced to reduce the standarddeviation. The standard multilateration method is modified to calculate therelative position between mobile structures. We combine UWB and IMUmeasurements in a probabilistic framework that enables users to calculatethe relative position between two nodes with less error. We have carried outdifferent experiments to illustrate the advantages of fusing IMU and UWBranges for relative positioning systems. We have achieved a mean accuracy of0.31m for 3D relative positioning in indoor line of sight conditions.
文摘The study presents sampling interval impacts on variance components of the epoch-wise residual errors in relative GPS positioning. In the variance components estimation process, the 2-way nested ANOVA method was used. For that purpose, GPS observation data during four months at two permanent GPS stations, establishing a 40-km-long baseline as a part of the Montenegrin permanent network(Monte Pos), were used. The study results showed that there is no statistically significant impact of sampling interval changes on epoch-wise variance components related to the residual tropospheric and ionospheric delays(effect a) when it comes to such a baseline. However, it is not the case with epoch-wise variance components related to the interstation-distance-independent residual ‘far-field’ multipath effect(effect b). It turned out that the absolute values of relative differences of standard deviations of the effect a on the relative GPS coordinates(e, n and u) had maximum values 11.1%, 10.2% and 8.9%,respectively. Keeping the same order of presentation for the effect b, the values of 5.9%, 9.9% and 12.5%were obtained. In addition, absolute values of relative differences of standard deviations of horizontal and vertical position had maximum values of 3.8% and 7.7%, respectively.
文摘Impact of satellite elevation cutoff angle and position dilution of precision(PDOP)mask change on epoch-wise variance components of unmodeled effects that accompany relative Global Positioning System(GPS)positioning is presented herein.Data used for this study refer to the winter and summer periods of the years with minimal(2008)and maximal(2013)solar activity.These data were collected every 30 s in static mode,at two permanent GPS stations located in Montenegro,establishing a mediumdistance(116-km-long)baseline with a height difference of approximately 760 m between its endpoints.The study showed that changing satellite elevation cutoff angle,with a fixed PDOP mask,affects epochwise two-way nested ANOVA estimates of variances related to the‘far-field’multipath(considered as the nested factor herein)and the combined unmodeled effect of tropospheric and ionospheric refraction(considered as the nesting factor herein).However,changing of PDOP mask,with a fixed satellite elevation cutoff angle,doesn’t affect epoch-wise two-way nested ANOVA estimate of variance of the combined unmodeled effect of tropospheric and ionospheric refraction,but,generally,affects the estimate of variance of the‘far-field’multipath(possibly mixed with a part of a‘shorter-term’ionospheric refraction),which is especially pronounced for the summer period.It should also be noted that there is a significant influence of satellite elevation cutoff angle change on both epoch-wise horizontal and vertical position accuracy,only for the summer period,especially in the presence of maximal solar activity,while there is no significant impact of PDOP mask change on epoch-wise positional accuracy.
基金partially sponsored by the National 973 Project of China(2013CB733303)partially supported by the postgraduate independent exploration project of Central South University(2014zzts249)
文摘Selecting the optimal reference satellite is an important component of high-precision relat/ve positioning because the reference satellite directly influences the strength of the normal equation. The reference satellite selection methods based on elevation and positional dilution of precision (PDOP) value were compared. Results show that all the above methods cannot select the optimal reference satellite. We introduce condition number of the design matrix in the reference satellite selection method to improve structure of the normal equation, because condition number can indicate the ill condition of the normal equation. The experimental results show that the new method can improve positioning accuracy and reliability in precise relative positioning.
基金Project(BA2012049)supported by the Special Fund of Jiangsu Province for the Transformation of Scientific and Technological Achievements,China
文摘To obtain the stable temperature field required for growing sapphire crystals, the influence of relative positions between RF coil and crucible on the performances of sapphires produced by edge-defined film-fed growth(EFG) technique was investigated. For comparison, the crucible was located at the top(case A) and the middle(case B) of the RF coil, respectively. Furthermore, the lattice integrities were studied by the double-crystal X-ray diffraction, and the dislocations were observed under the optical microscope and atomic force microscope after corroding in molten KOH at 390 ℃. The crystals in case B exhibit better lattice integrity with smaller full width at half maximum of 29.13 rad·s, while the value in case A is 45.17 rad·s. The morphologies of dislocation etch pits in both cases show typical triangular symmetry with smooth surfaces. However, the dislocation density of 2.8×104 cm-2 in case B is only half of that in case A, and the distribution is more uniform, compared to the U-shaper in case A.
文摘Based on the 6-pole outer stator(armature winding-stator),the influence of inner(permanent magnet-stator)/outer stator pole ratio n(n=NIS/NOS),stator relative positions and rotor pole number combinations on electromagnetic performance of partitioned stator switched flux permanent magnet(PM)machines(PS-SFPMMs)is investigated in this paper.Since the armature windings and PMs are located in two separated stators and PMs are stationary,PS-SFPMMs have high fault tolerance capabilities.To maximize the torque performance,the PM of inner stator pole should be aligned with outer stator pole when n is odd while the iron rib of inner stator pole should be aligned with outer stator pole when n is even.No matter what n is selected,the rotor pole number NR can be any integers except the phase number and its multiples.The analysis results indicate that the optimal NR is closed to(NIS+NOS)/2 and it is odd when n is odd while it is even when n is even.Meanwhile,symmetrical phase back-EMF waveform will be obtained when the ratio of Min(NOS,NIS)to the greatest common divisor of Min(NOS,NIS)and NR is even.Based on the optimal rotor pole numbers for 6-pole outer stator with different n and corresponding optimal relative position together with same rated copper loss,the average torque is improved by 18.4%,25.1%and 25.7%respectively in PS-SFPMMs with n equal to 2,3 and 4 when compared with PS-SFPMM with n equal to 1.The analyses are validated by experiment results of the prototype machine.
基金supported by the Scientific and Technological Research and Development Programs of China Railway Group Limited(Grant No.2022 Major Special Project-07)Gansu Provincial Technology Innovation Guidance Program-Special Funding for Capacity Building of Enterprise R&D Institutions(Grant No.23CXJA0011)Key R&D and transformation plan of Qinghai Province,China(Special Project for Transformation of Scientific and Technological Achievements No.2022-SF-158).
文摘In the actual monitoring of deep hole displacement,the identification of slip surfaces is primarily based on abrupt changes observed in the inclinometric curve.In conventional identification methods,inclinometric curves exhibiting indications of sliding can be categorized into three types:B-type,D-type,and r-type.The position of the slip surface is typically determined by identifying the depth corresponding to the point of maximum displacement mutation.However,this method is sensitive to the interval of measurement points and the observation scale of the coordinate axes and suffers from unclear sliding surfaces and uncertain values.Based on the variation characteristics of these diagonal curves,we classified the landslide into three components:the sliding body,the sliding interval,and the immobile body.Moreover,three different generalization models were established to analyze the relationships between the curve form and the slip surface location based on different physical indicators such as displacement rate,relative displacement,and acceleration.The results show that the displacement rate curves of an r-type slope exhibit a clustering feature in the sliding interval,and by solving for the depth of discrete points within the step phase,it is possible to determine the location of the slip surface.On the other hand,D-type slopes have inflection points in the relative displacement curve located at the slip surface.The acceleration curves of B-type slopes exhibit clustering characteristics during the sliding interval,while the scattered acceleration data demonstrate wandering characteristics.Consequently,the slip surface location can be revealed by solving the depth corresponding to the maximum acceleration with cubic spline interpolation.The approach proposed in this paper was applied to the monitoring data of a landslide in Yunnan Province,China.The results indicate that our approach can accurately identify the slip surface location and enable computability of its position,thereby enhancing applicability and reliability of the deep-hole displacement monitoring data.
基金the National High Technology Research and Development Program of China(No.2001AA505000,2004AA505240)
文摘In the high-speed maglev system,accurate real-time information of the train position is essential forstable,safe and efficient train operation.To detect the relative position of the high-speed maglev trainfrom a reference position,a location method based on long stator slot detection was proposed.Besides,aprototype system has been successfully developed.The hardware structure of the system,as well as itsworking principle was described.Moreover,a subdivision algorithm for calculating the pole location anglesignal was elucidated.Experiments show that the proposed method is feasible.The technical indexes ofthe detection system satisfy the requirements of the vehicle operation control system.The relative positionsensing system can be put into practice.
文摘An adaptive prescribed performance control scheme is proposed for the drag free satellite in the presence of actuator saturation and external disturbances.The relative translation and rotation dynamics between the test mass and outer satellite are firstly derived.To guarantee prescribed performance bounds on the transient and steady control errors of relative states,a performance constrained control law is formulated with an error transformed function.In addition,the requirements to know the system parameters and the upper bound of the external disturbance in advance have been eliminated by adaptive updating technique.A command filter is concurrently used to overcome the problem of explosion of complexity inherent in the backstepping control design.Subsequently,a novel auxiliary system is constructed to compensate the adverse effects of the actuator saturation constrains.It is proved that all signals in the closed?loop system are ultimately bounded and prescribed performance of relative position and attitude control errors are guaranteed.Finally,numerical simulation results are given to demonstrate the effectiveness of the proposed approach.
基金the Research Management Center,Xiamen University Malaysia under XMUM Research Program Cycle 4(Grant No.XMUMRF/2019-C4/IECE/0012).
文摘Glycation is a non-enzymatic post-translational modification which assigns sugar molecule and residues to a peptide.It is a clinically important attribute to numerous age-related,metabolic,and chronic diseases such as diabetes,Alzheimer’s,renal failure,etc.Identification of a non-enzymatic reaction are quite challenging in research.Manual identification in labs is a very costly and timeconsuming process.In this research,we developed an accurate,valid,and a robust model named as Gly-LysPred to differentiate the glycated sites from non-glycated sites.Comprehensive techniques using position relative features are used for feature extraction.An algorithm named as a random forest with some preprocessing techniques and feature engineering techniques was developed to train a computational model.Various types of testing techniques such as self-consistency testing,jackknife testing,and cross-validation testing are used to evaluate the model.The overall model’s accuracy was accomplished through self-consistency,jackknife,and cross-validation testing 100%,99.92%,and 99.88%with MCC 1.00,0.99,and 0.997 respectively.In this regard,a user-friendly webserver is also urbanized to accumulate the whole procedure.These features vectorization methods suggest that they can play a critical role in other web servers which are developed to classify lysine glycation.
基金Supported by the National Natural Science Foundation of China (No.61070182, No. 60873192, No. 61170225)
文摘After presenting weaknesses of several classic routing protocols applied in vehicular ad hoc networks (VANETs) by a qualitative comparison, this paper proposes a novel self-adaptive routing protocol, named ARPP. With respect to the specific characteristics of VANETs, the proposed routing protocol adopts a dynamic topology establishment and time-varying control message sending mechanism. A direction-based forwarding strategy and a specific warning solution enhance the routing performance in ARPP. Simulation results show that the ARPP protocol outperforms the classic AODV in urban vehicle environment.
基金sponsored by the National Key Technology R&D Program(2006BAC13B02),ChinaSpecial Program for Earthquake Research of CEA (200708003)
文摘By using the finite element method and viscoelastic artificial boundary, a soil-structure interaction system is established to simulate the influence of surface buildings on the seismic response of subway structures. The conditions of different relative positions between ground building and subway structure are analyzed. The result~ indicate that when considering the existence of surface buildings, the relative story displacements and internal forces of subway structures are changed greatly. Further the influence of surface buildings on subway structure changes as the distance increases.
文摘To achieve the satellite formation control and the succeed formation missions, we present a new stealthy method to determine the relative states between formation satellites. In this method, the combination of a CCD camera and laser radar is used as the relative measure sensors. To reduce electromagnetic radiation, the laser radar works intermittently to minimize the probability of being discovered. And an unscented Kalman filter (UKF) is applied to estimate the relative states. The observability of this method is analyzed. The validity and effectiveness of the method is demonstrated in a typical application of formation relative navigation.
基金sponsored by National Natural Science Foundation of China(NSFC)(31700550,31770678)Fujian Province Forestry and Technology Project of China(2022FKJ21)Forestry Peak Discipline Construction Project of Fujian Agriculture and Forestry University of China(72202200205).
文摘Variations in plant traits are indicative of plant adaptations to forest environments,and studying their relationships with tree growth provides valuable insights into forest regeneration.The spatial arrangement of plant seeds within the forest litter or soil critically infuences the variations of root-leaf traits,thereby affecting the adaptive strategies of emerging seedlings.However,our current understanding of the impacts of individual root-leaf traits on seedling growth in different relative position,and whether these traits together affect growth,remains limited.This study focuses on the dominant tree species,Castanopsis kawakamii,within the Sanming C.kawakamii Nature Reserve of China.The present experiment aimed to examine the variations in root-leaf traits of seedling,focus on the relative positions of seeds within different layers:beneath or above the litter layer,or within the bare soil layer(without litter).Our fndings provided evidence supporting a coordinated relationship between root and leaf traits,wherein leaf traits varied in conjunction with root traits in the relative positions of seeds.Specifcally,we observed that seedlings exhibited higher values for specifc leaf area and average root diameter,while displaying lower root tissue density.The mixed model explained 86.1%of the variation in root-leaf traits,surpassing the variation explained by the relative positions.Furthermore,soil nitrogen acted as a mediator,regulating the relationship between seedling growth and root-leaf traits,specifcally leaf dry matter content and root tissue density.Therefore,future studies should consider artifcially manipulating tree species diversity based on root-leaf traits characteristics to promote forest recovery.
文摘Urban heritage is a vital resource that connects communities to their local identity.Unplanned developments and rapid urbanisation often harm the authenticity of historic areas,disrupting the cultural fabric and altering their character.This study introduces the Relative Positive Impact Index(RPll),a novel technique for assessing the socio-cultural impacts of urban revitalisation.The significance of RPII lies in its ability to quantitatively evaluate the impacts on the cultural fabric and integrity of historic urban areas,which is crucial for sustainable urban development.The study's objective is to apply RPII in evaluating qualitative socio-cultural characteristics in historic urban areas,with a focus on four main criteria and 16 sub-criteria,in the case of the Kuttichira precinct.The methodology integrates the analysis of published literature,a quantitative survey mapping the stakeholders'perception,and qualitative insights.This approach facilitates an in-depth understanding of how urban revitalisation affects local socio-cultural dynamics,preserving the authenticity and character of historic areas.The study reveals that the revitalisation project in Kuttichira positively impacts the socio-cultural fabric of the area,maintaining cultural integrity and addressing social challenges.These findings offer valuable insights for sustainable urban development and policymaking in historic areas.The study recommends the application of RPll in other urban precincts for comparative analysis and further development of urban development practices,contributing to informed urban policy and planning decisions.
基金supported by UGC Sponsored UPE-ⅡProject in Cognitive Science of Jadavpur University,Kolkata
文摘The paper introduces an electroencephalography(EEG) driven online position control scheme for a robot arm by utilizing motor imagery to activate and error related potential(ErrP) to stop the movement of the individual links, following a fixed(pre-defined) order of link selection. The right(left)hand motor imagery is used to turn a link clockwise(counterclockwise) and foot imagery is used to move a link forward. The occurrence of ErrP here indicates that the link under motion crosses the visually fixed target position, which usually is a plane/line/point depending on the desired transition of the link across 3D planes/around 2D lines/along 2D lines respectively. The imagined task about individual link's movement is decoded by a classifier into three possible class labels: clockwise, counterclockwise and no movement in case of rotational movements and forward, backward and no movement in case of translational movements. One additional classifier is required to detect the occurrence of the ErrP signal, elicited due to visually inspired positional link error with reference to a geometrically selected target position. Wavelet coefficients and adaptive autoregressive parameters are extracted as features for motor imagery and ErrP signals respectively. Support vector machine classifiers are used to decode motor imagination and ErrP with high classification accuracy above 80%. The average time taken by the proposed scheme to decode and execute control intentions for the complete movement of three links of a robot is approximately33 seconds. The steady-state error and peak overshoot of the proposed controller are experimentally obtained as 1.1% and4.6% respectively.
文摘For the improvement of accuracy and better fault-tolerant performance, a global position system (GPS)/vision navigation (VISNAV) integrated relative navigation and attitude determination approach is presented for ultra-close spacecraft formation flying. Onboard GPS and VISNAV system are adopted and a federal Kalman filter architecture is used for the total navigation system design. Simulation results indicate that the integrated system can provide a total improvement of relative navigation and attitude estimation performance in accuracy and fault-tolerance.
基金Supported by the NNSFC (20737001, 20977046)NSF of Zhejiang Province (2008Y507280)
文摘The thermodynamic properties of xanthone(XTH) and 135 polybrominated xanthones(PBXTHs) in the standard state have been calculated at the B3LYP/6-31G* level using Gaussian 03 program.The isodesmic reactions were designed to calculate the standard enthalpy of formation(△fHθ) and standard free energy of formation(△fGθ) of PBXTH congeners.The relations of these thermodynamic parameters with the number and position of Br atom substitution(NPBS) were discussed,and it was found that there exist high correlation between thermodynamic parameters(entropy(Sθ),△fHθ and △fGθ) and NPBS.According to the relative magnitude of their △fGθ,the relative stability order of PBXTH congeners was theoretically proposed.The relative rate constants of formation reactions of PBXTH congeners were calculated,Moreover,the values of molar heat capacity at constant pressure(Cp,m) from 200 to 1000 K for PBXTH congeners were also calculated,and the temperature dependence relation of them was obtained,suggesting very good relationships between Cp,m and temperature(T,T^1 and T^2) for almost all PBXTH congeners.