A kinetic 5-vertex model is used to investigate hexagon-islands formation on growing single-walled carbon nanotubes (SWCNT). In the model, carbon atoms adsorption and migration processes on the SWCNT edge are consider...A kinetic 5-vertex model is used to investigate hexagon-islands formation on growing single-walled carbon nanotubes (SWCNT). In the model, carbon atoms adsorption and migration processes on the SWCNT edge are considered. These two dynamic processes are assumed to be mutually independent as well as mutually dependent as far as the whole growth of the nanotube is concerned. Key physical parameters of the model are the growth time t, the diffusion length Γ defined as the ratio of the diffusion rate D to the carbon atomic flux F and the SWCNT chiral angle. The kinetic equation that describes the nanotube edge dynamics is solved using kinetic Monte Carlo simulations with the Bortz, Kalos and Lebowitz update algorithm. The behaviors of islands density and size distribution are investigated within the growth parameters’ space. Our study revealed key mechanisms that enable the formation of a new ring of hexagons at the SWCNT edge. The growth occurs either by pre-existing steps propagation or by hexagon-islands growth and coalescence on terraces located between dislocation steps, depending on values of model parameters. This should offer a road map for edge design in nanotubes production. We also found that in appropriate growth conditions, the islands density follows Gaussian and generalized Wigner distributions whereas their size distribution at a given growth time shows a decreasing exponential trend.展开更多
At present, shallow gases have received much attention due to low cost in exploration and production. Low-mature gases, as one significant origin to shallow gas, turns to be an important research topic. The present un...At present, shallow gases have received much attention due to low cost in exploration and production. Low-mature gases, as one significant origin to shallow gas, turns to be an important research topic. The present understanding of low-mature gases is confined within some geological cases, and few laboratory studies have been reported. Therefore, the potential and characters of low- mature gases are not clear up to now. Here, two premature samples (one coal and the other shale) were pyrolyzed in a gold confined system. The gaseous components including hydrocarbon gases and non-hydrocarbon gases were analyzed. Based on kinetic modeling, the formation of low-mature gases was modeled. The results showed that during low mature stage, about 178 mL/gTOC gas was generated from the shale and 100 mL/gTOC from the coal. Two third to three fourth of the generated gases are non-hydrocarbon gases such as H2S and CO2. The total yields of C1-5 for the two samples are almost the same, 30-40 mL/gTOC, but individual gaseous hydrocarbon is different. The shale has much lower C1 but higher C2-5, whereas the coal has higher C1 but lower C2-5. Hydrocarbon gases formed during low-mature stage are very wet. The stable carbon isotope ratios of methane range from -40‰ to -50‰ (PDB), in good consistence with empiric criterion for low-mature gases summed up by the previous researchers. The generation characters suggest that the low-mature gases could be accumulated to form an economic gas reservoir, but most of them occur only as associated gases.展开更多
通过水热晶化法,合成含有骨架杂原子Fe的Fe-HZSM-5分子筛催化剂,采用XRD、BET和NH3-TPD对催化剂进行表征,在微型固定床反应器中测定催化剂的甲醇制汽油的反应性能和反应动力学数据,对Fe-HZSM-5分子筛催化剂的甲醇制汽油本征动力学进行...通过水热晶化法,合成含有骨架杂原子Fe的Fe-HZSM-5分子筛催化剂,采用XRD、BET和NH3-TPD对催化剂进行表征,在微型固定床反应器中测定催化剂的甲醇制汽油的反应性能和反应动力学数据,对Fe-HZSM-5分子筛催化剂的甲醇制汽油本征动力学进行研究。结果表明,ZSM-5分子筛骨架引入杂原子Fe,可以增加对产物汽油选择性有利的弱酸量。采用Chen and Reagan建立的甲醇制汽油三集总动力学模型,通过Runge-Kutta法和最小二乘法对实验数据的回归计算,获得反应速率常数为k1=0.921×1012exp(-108 600/RT)、k2=0.155×1012exp(-116 400/RT)和k3=1.008×107exp(-96 130/RT)。以目标残差函数OF参数值为检验模型的标准,模拟值和实验值的相关系数R2均超过0.99。因此,Chen and Reagan建立的甲醇制汽油三集总动力学模型可以准确描述Fe-HZSM-5分子筛催化剂的甲醇制汽油反应动力学行为。展开更多
以结焦的ZSM-5分子筛催化剂为研究对象,在热重分析仪上进行催化剂再生烧炭实验,在500~650℃和氧分压10~25 k Pa的条件下,考察了再生温度、氧分压及时间对烧炭过程的影响,计算得到含碳量1.3%(质量分数)的催化剂的再生动力学参数,回归得...以结焦的ZSM-5分子筛催化剂为研究对象,在热重分析仪上进行催化剂再生烧炭实验,在500~650℃和氧分压10~25 k Pa的条件下,考察了再生温度、氧分压及时间对烧炭过程的影响,计算得到含碳量1.3%(质量分数)的催化剂的再生动力学参数,回归得到ZSM-5分子筛催化剂再生动力学模型。结果表明,适宜的再生烧炭温度在600℃左右,适宜的氧分压为15~20 k Pa。ZSM-5结焦催化剂的烧炭反应速率与炭含量和氧分压的关系符合一级反应规律,该模型能较好地拟合实验数据。展开更多
文摘A kinetic 5-vertex model is used to investigate hexagon-islands formation on growing single-walled carbon nanotubes (SWCNT). In the model, carbon atoms adsorption and migration processes on the SWCNT edge are considered. These two dynamic processes are assumed to be mutually independent as well as mutually dependent as far as the whole growth of the nanotube is concerned. Key physical parameters of the model are the growth time t, the diffusion length Γ defined as the ratio of the diffusion rate D to the carbon atomic flux F and the SWCNT chiral angle. The kinetic equation that describes the nanotube edge dynamics is solved using kinetic Monte Carlo simulations with the Bortz, Kalos and Lebowitz update algorithm. The behaviors of islands density and size distribution are investigated within the growth parameters’ space. Our study revealed key mechanisms that enable the formation of a new ring of hexagons at the SWCNT edge. The growth occurs either by pre-existing steps propagation or by hexagon-islands growth and coalescence on terraces located between dislocation steps, depending on values of model parameters. This should offer a road map for edge design in nanotubes production. We also found that in appropriate growth conditions, the islands density follows Gaussian and generalized Wigner distributions whereas their size distribution at a given growth time shows a decreasing exponential trend.
基金supported by the CNPC Project(Grant No.06-01C-01-04)National Natural Science Foundation of China(Grant No.40603014).
文摘At present, shallow gases have received much attention due to low cost in exploration and production. Low-mature gases, as one significant origin to shallow gas, turns to be an important research topic. The present understanding of low-mature gases is confined within some geological cases, and few laboratory studies have been reported. Therefore, the potential and characters of low- mature gases are not clear up to now. Here, two premature samples (one coal and the other shale) were pyrolyzed in a gold confined system. The gaseous components including hydrocarbon gases and non-hydrocarbon gases were analyzed. Based on kinetic modeling, the formation of low-mature gases was modeled. The results showed that during low mature stage, about 178 mL/gTOC gas was generated from the shale and 100 mL/gTOC from the coal. Two third to three fourth of the generated gases are non-hydrocarbon gases such as H2S and CO2. The total yields of C1-5 for the two samples are almost the same, 30-40 mL/gTOC, but individual gaseous hydrocarbon is different. The shale has much lower C1 but higher C2-5, whereas the coal has higher C1 but lower C2-5. Hydrocarbon gases formed during low-mature stage are very wet. The stable carbon isotope ratios of methane range from -40‰ to -50‰ (PDB), in good consistence with empiric criterion for low-mature gases summed up by the previous researchers. The generation characters suggest that the low-mature gases could be accumulated to form an economic gas reservoir, but most of them occur only as associated gases.
文摘通过水热晶化法,合成含有骨架杂原子Fe的Fe-HZSM-5分子筛催化剂,采用XRD、BET和NH3-TPD对催化剂进行表征,在微型固定床反应器中测定催化剂的甲醇制汽油的反应性能和反应动力学数据,对Fe-HZSM-5分子筛催化剂的甲醇制汽油本征动力学进行研究。结果表明,ZSM-5分子筛骨架引入杂原子Fe,可以增加对产物汽油选择性有利的弱酸量。采用Chen and Reagan建立的甲醇制汽油三集总动力学模型,通过Runge-Kutta法和最小二乘法对实验数据的回归计算,获得反应速率常数为k1=0.921×1012exp(-108 600/RT)、k2=0.155×1012exp(-116 400/RT)和k3=1.008×107exp(-96 130/RT)。以目标残差函数OF参数值为检验模型的标准,模拟值和实验值的相关系数R2均超过0.99。因此,Chen and Reagan建立的甲醇制汽油三集总动力学模型可以准确描述Fe-HZSM-5分子筛催化剂的甲醇制汽油反应动力学行为。
文摘以结焦的ZSM-5分子筛催化剂为研究对象,在热重分析仪上进行催化剂再生烧炭实验,在500~650℃和氧分压10~25 k Pa的条件下,考察了再生温度、氧分压及时间对烧炭过程的影响,计算得到含碳量1.3%(质量分数)的催化剂的再生动力学参数,回归得到ZSM-5分子筛催化剂再生动力学模型。结果表明,适宜的再生烧炭温度在600℃左右,适宜的氧分压为15~20 k Pa。ZSM-5结焦催化剂的烧炭反应速率与炭含量和氧分压的关系符合一级反应规律,该模型能较好地拟合实验数据。
文摘在食品中,磷酸、柠檬酸等酸味物质可催化葡萄糖、果糖等甜味物质转化为5-羟甲基糠醛(5-HMF)。本研究中,将糖酸混合溶液放于安瓿瓶中,采用油浴加热,三种反应温度分别为373 K、393 K、413 K,以HPLC测定了加热时间8 h内的糖酸体系中5-HMF浓度随着时间的变化;利用origin 8.0对数据进行拟合,建立动力学模型。最终发现无机三元酸磷酸的催化效率高于有机三元酸柠檬酸,果糖转化程度高于葡萄糖。在葡萄糖磷酸体系(GP)、葡萄糖柠檬酸体系(GL)、果糖磷酸体系(FP)、果糖柠檬酸体系(FL)中,5-HMF的浓度随着时间的延长呈直线上升,符合零级动力学模型。动力学分析得到四种反应体系的反应活化能(Ea)分别为109.16k J/mol、121.09 k J/mol、102.89 k J/mol、112.36 k J/mol,GP体系中Ea最高,FL体系中最低。在糖酸食品热加工过程中,磷酸、果糖的含量对食品中的5-HMF含量影响很大。