期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Magnetization dynamics of mixed Co–Au chains on Cu(110) substrate:Combined ab initio and kinetic Monte Carlo study
1
作者 K.M.Tsysar S.V.Kolesnikov A.M.Saletsky 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第9期474-478,共5页
We present an investigation of the one-dimensional ferromagnetism in Au–Co nanowires deposited on the Cu(110)surface. By using the density functional theory, the influence of the nonmagnetic copper substrate Cu(11... We present an investigation of the one-dimensional ferromagnetism in Au–Co nanowires deposited on the Cu(110)surface. By using the density functional theory, the influence of the nonmagnetic copper substrate Cu(110) on the magnetic properties of the bimetallic Au–Co nanowires is studied. The results show the emergence of magnetic anisotropy in the supported Au–Co nanowires. The magnetic anisotropy energy has the same order of magnitude as the exchange interaction energy between Co atoms in the wire. Our electronic structure calculation reveals the emergence of new hybridized bands between Au and Co atoms and surface Cu atoms. The Curie temperature of the Au–Co wires is calculated by means of kinetic Monte Carlo simulation. The strong size effect of the Curie temperature is demonstrated. 展开更多
关键词 magnetic properties NANOWIRES density functional theory kinetic monte carlo simulation
下载PDF
Quantitative Simulation Study of Metal Additive Manufacturing by Kinetic Monte Carlo
2
作者 Kepeng Ouyang Youdi Kuang 《Journal of Applied Mathematics and Physics》 2022年第5期1587-1601,共15页
Metal additive manufacturing (AM) is a disruptive manufacturing technology that takes into account the needs of complex structural forming and high-performance component forming. At present, the understanding of metal... Metal additive manufacturing (AM) is a disruptive manufacturing technology that takes into account the needs of complex structural forming and high-performance component forming. At present, the understanding of metal additive manufacturing simulation methods is not thorough enough, which restricts the development of metal additive manufacturing. Present work discusses the evolution of KMC method simulation results for simulating metal additive manufacturing at different length ratios and different scanning speeds. The results reveal that as the scanning speed increases, the main grains in the simulation results are transformed from coarse columnar grains to crescent-shaped grains, which are in good agreement with the existing experimental results. Besides, as the ratio of unit physical length to unit simulation length increases, the ratio of unit physical time to unit simulation time gradually decreases. 展开更多
关键词 Additive Manufacturing kinetic monte carlo Simulation Grain Morphology
下载PDF
Kinetic Monte Carlo Simulation of Metallic Nanoislands Grown by Physical Vapor Deposition
3
作者 Abuhanif K.Bhuiyan S.K.Dew M.Stepanova 《Communications in Computational Physics》 SCIE 2011年第1期49-67,共19页
We report kinetic Monte-Karlo(KMC)simulation of self-assembled synthesis of nanocrystals by physical vapor deposition(PVD),which is one of most flexible,efficient,and clean techniques to fabricate nanopatterns.In part... We report kinetic Monte-Karlo(KMC)simulation of self-assembled synthesis of nanocrystals by physical vapor deposition(PVD),which is one of most flexible,efficient,and clean techniques to fabricate nanopatterns.In particular,self-assembled arrays of nanocrystals can be synthesized by PVD.However size,shape and density of self-assembled nanocrystals are highly sensitive to the process conditions such as duration of deposition,temperature,substrate material,etc.To efficiently synthesize nanocrystalline arrays by PVD,the process control factors should be understood in detail.KMC simulations of film deposition are an important tool for understanding the mechanisms of film deposition.In this paper,we report a KMC modeling that explicitly represents PVD synthesis of self-assembled nanocrystals.We study how varying critical process parameters such as deposition rate,duration,temperature,and substrate type affect the lateral 2D morphologies of self-assembled metallic islands on substrates,and compare our results with experimentally observed surface morphologies generated by PVD.Our simulations align well with experimental results reported in the literature. 展开更多
关键词 kinetic monte carlo Simulation(KMC) NANOCRYSTALS NANOTECHNOLOGY
原文传递
Coarse-graining Calcium Dynamics on Stochastic Reaction-diffusion Lattice Model 被引量:1
4
作者 申传胜 陈含爽 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第2期181-184,I0003,I0004,共6页
We develop a coarse grained (CG) approach for efficiently simulating calcium dynamics in the endoplasmic reticulum membrane based on a fine stochastic lattice gas model. By grouping neighboring microscopic sites tog... We develop a coarse grained (CG) approach for efficiently simulating calcium dynamics in the endoplasmic reticulum membrane based on a fine stochastic lattice gas model. By grouping neighboring microscopic sites together into CG cells and deriving CG reaction rates using local mean field approximation, we perform CG kinetic Monte Carlo (kMC) simulations and find the results of CG-kMC simulations are in excellent agreement with that of the microscopic ones. Strikingly, there is an appropriate range of coarse proportion rn, corresponding to the minimal deviation of the phase transition point compared to the microscopic one. For fixed m, the critical point increases monotonously as the system size increases, especially, there exists scaling law between the deviations of the phase transition point and the system size. Moreover, the CG approach provides significantly faster Monte Carlo simulations which are easy to implement and are directly related to the microscopics, so that one can study the system size effects at the cost of reasonable computational time. 展开更多
关键词 Calcium dynamics kinetic monte carlo simulation Lattice model Coarse- vgrammg
下载PDF
Simulation of multilayer homoepitaxial growth on Cu (100) surface 被引量:3
5
作者 吴锋民 陆杭军 吴自勤 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第4期807-812,共6页
The processes of multilayer thin Cu films grown on Cu (100) surfaces at elevated temperature (250-400K) are simulated by mean of kinetic Monte Carlo (KMC) method, where the realistic growth model and physical pa... The processes of multilayer thin Cu films grown on Cu (100) surfaces at elevated temperature (250-400K) are simulated by mean of kinetic Monte Carlo (KMC) method, where the realistic growth model and physical parameters are used. The effects of small island (dimer and trimer) diffusion, edge diffusion along the islands, exchange of the adatom with an atom in the existing island, as well as mass transport between interlayers are included in the simulation model. Emphasis is placed on revealing the influence of the Ehrlic-Schwoebel (ES) barrier on growth mode and morphology during multilayer thin film growth. We present numerical evidence that the ES barrier does exist for the Cu/Cu(100) system and an ES barrier EB 〉 0.125eV is estimated from a comparison of the KMC simulation with the realistic experimental images. The transitions of growth modes with growth conditions and the influence of exchange barrier on growth mode are also investigated. 展开更多
关键词 growth mode ES barrier multilayer growth kinetic monte carlo simulation
下载PDF
Broadening of Cr nanostructures in laser-focused atomic deposition 被引量:1
6
作者 卢向东 李同保 马艳 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第12期168-173,共6页
This paper presents the experimental progress of laser-focused Cr atomic deposition and the experimental condition. The result is an accurate array of lines with a periodicity of 212.8±0.2 nm and mean full-width ... This paper presents the experimental progress of laser-focused Cr atomic deposition and the experimental condition. The result is an accurate array of lines with a periodicity of 212.8±0.2 nm and mean full-width at half maximum as approximately 95 nm. Surface growth in laser-focused Cr atomic deposition is modeled and studied by kinetic Monte Carlo simulation including two events: the one is that atom trajectories in laser standing wave are simulated with the semiclassical equations of motion to obtain the deposition position; the other is that adatom diffuses by considering two major diffusion processes, namely, terrace diffusion and step-edge descending. Comparing with experimental results (Anderson W R, Bradley C C, McClelland J J and Celotta R J 1999 Phys. Rev. A 59 2476), it finds that the simulated trend of dependence on feature width is in agreement with the power of standing wave, the other two simulated trends are the same in the initial stage. These results demonstrate that some surface diffusion processes play important role in feature width broadening. Numerical result also shows that high incoming beam flux of atoms deposited redounds to decrease the distance between adatoms which can diffuse to minimize the feature width and enhance the contrast. 展开更多
关键词 atom optics laser-focused atomic deposition kinetic monte carlo simulation surface growth
下载PDF
Lattice Mismatch Induced Tunable Dimensionality of Transition Metal Dichalcogenides
7
作者 Hanxiao Dong Huijun Jiang Zhonghuai Hou 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2022年第6期853-859,I0001-I0004,I0072,共12页
Low-dimensional materials have excellent properties which are closely related to their dimensionality.However,the growth mechanism underlying tunable dimensionality from 2D triangles to 1D ribbons of such materials is... Low-dimensional materials have excellent properties which are closely related to their dimensionality.However,the growth mechanism underlying tunable dimensionality from 2D triangles to 1D ribbons of such materials is still unrevealed.Here,we establish a general kinetic Monte Carlo model for transition metal dichalcogenides(TMDs) growth to address such an issue.Our model is able to reproduce several key findings in experiments,and reveals that the dimensionality is determined by the lattice mismatch and the interaction strength between TMDs and the substrate.We predict that the dimensionality can be well tuned by the interaction strength and the geometry of the substrate.Our work deepens the understanding of tunable dimensionality of low-dimensional materials and may inspire new concepts for the design of such materials with expected dimensionality. 展开更多
关键词 Transition metal dichalcogenide Dimensionality Low-dimensional material Lattice mismatch kinetic monte carlo simulation
下载PDF
Coverage Dependence of Growth Mode in Heteroepitaxy of Ni on Cu(100) Surface
8
作者 WU Feng-Min LU Hang-Jun FANG Yun-Zhang HUANG Shi-Hua 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第7期231-236,共6页
A realistic kinetic Monte Carlo (KMC) simulation model with physical parameters is developed, which well reproduces the heteroepitaxial growth of multilayered Ni thin film on Cu(100) surfaces at room temperature. ... A realistic kinetic Monte Carlo (KMC) simulation model with physical parameters is developed, which well reproduces the heteroepitaxial growth of multilayered Ni thin film on Cu(100) surfaces at room temperature. The effects of mass transport between interlayers and edge diffusion of atoms along the islands are included in the simulation model, and the surface roughness and the layer distribution versus total coverage are calculated. Speeially, the simulation model reveals the transition of growth mode with coverage and the difference between the Ni heteroepitaxy on Cu(100) and the Ni homoepitaxy on Ni(100). Through comparison of KMC simulation with the real scanning tunneling microscopy (STM) experiments, the Ehrlich-Schwoebel (ES) barrier Ees is estimated to be 0.18±0.02 eV for Ni/Cu(100) system while 0.28 eV for Ni/Ni(100). The simulation also shows that the growth mode depends strongly on the thickness of thin film and the surface temperature, and the critical thickness of growth mode transition is dependent on the growth condition such as surface temperature and deposition flux as well. 展开更多
关键词 heteroepitary growth mode ES barrier kinetic monte carlo simulation
下载PDF
Simulation of multilayer Cu/Pd(100) heteroepitaxial growth by pulse laser deposition
9
作者 吴锋民 陆杭军 +1 位作者 方允樟 黄仕华 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第10期3029-3035,共7页
The heteroepitaxial growth of multilayer Cu/Pd(100) thin film via pulse laser deposition (PLD) at room temperature is simulated by using kinetic Monte Carlo (KMC) method with realistic physical parameters. The e... The heteroepitaxial growth of multilayer Cu/Pd(100) thin film via pulse laser deposition (PLD) at room temperature is simulated by using kinetic Monte Carlo (KMC) method with realistic physical parameters. The effects of mass transport between interlayers, edge diffusion of adatoms along the islands and instantaneous deposition are considered in the simulation model, Emphasis is placed on revealing the details of multilayer Cu/Pd(100) thin film growth and estimating the Ehrlich-Schwoebel (ES) barrier. It is shown that the instantaneous deposition in the PLD growth gives rise to the layer-by-layer growth mode, persisting up to about 9 monolayers (ML) of Cu/Pd(100). The ES barriers of 0.08 ± 0.01 eV is estimated by comparing the KMC simulation results with the real scanning tunnelling microscopy (STM) measurements, 展开更多
关键词 HETEROEPITAXY pulse laser deposition Ehrlich-Schwoebel (ES) barrier kinetic monte carlo simulation
下载PDF
Understanding the sluggish and highly variable transport kinetics of lithium ions in LiFePO_4 被引量:1
10
作者 Youcheng Hu Xiaoxiao Wang +2 位作者 Peng Li Junxiang Chen Shengli Chen 《Science China Chemistry》 SCIE EI CAS CSCD 2023年第11期3297-3306,共10页
LiFePO_(4),one of the mainstream cathode materials of current EV batteries,exhibits experimental diffusion coefficients(D_(c))of Li^(+)which are not only several orders of magnitude lower than those predicted by the i... LiFePO_(4),one of the mainstream cathode materials of current EV batteries,exhibits experimental diffusion coefficients(D_(c))of Li^(+)which are not only several orders of magnitude lower than those predicted by the ionic hopping barriers obtained from theoretical calculations and spectroscopic measurements,but also span several orders from 10^(-14)to 10^(-18)cm^(2)s^(-1)under different states of charge(SOC)and the charging rates(C-rates).Atomic level understanding of such sluggishness and diversity of Li^(+)transport kinetics would be of significance in improving the rate performance of LiFePO_(4)through material and operation optimization but remain challenging.Herein,we show that the high sensitivity of Li^(+)hopping barriers on the local Li–Li coordination environments(numbers and configurations)plays a key role in the ion transport kinetics.This is due a neural network-based deep potential(DP)which allows accurate and efficient calculation of hopping barriers of Li^(+)in LiFePO_(4)with various Li–Li coordination environments,with which the kinetic Monte-Carlo(KMC)method was employed to determine the D_(c)values at various C-rates and SOC across a broad spectrum.Especially,an accelerated KMC simulation strategy is proposed to obtain the D_(c)values under a wide range of SOC at low C-rates,which agree well with that obtained from the galvanostatic intermittent titration technique(GITT).The present study provides accurate descriptions of Li^(+)transport kinetics at both very high and low C-rates,which remains challenging to experiments and first-principles calculations,respectively.Finally,it is revealed that the gradient distributions of Li^(+)density along the diffusion path result in great asymmetry in the barriers of the forward and backward hopping,causing very slow diffusion of Li^(+)and the diverse variation of D_(c). 展开更多
关键词 lithium iron phosphate diffusion coefficient machine-learning potential kinetic monte carlo simulations
原文传递
Simulation of secondary nucleation of polymer crystallization via a model of microscopic kinetics
11
作者 Kun-Lun Xu Bao-Hua Guo +2 位作者 Renate Reiter Günter Reiter Jun Xua 《Chinese Chemical Letters》 SCIE CAS CSCD 2015年第9期1105-1108,共4页
We present simulations of the mechanism of secondary nucleation of polymer crystallization,based on a new model accounting for the microscopic kinetics of attaching and detaching.As the key feature of the model,we int... We present simulations of the mechanism of secondary nucleation of polymer crystallization,based on a new model accounting for the microscopic kinetics of attaching and detaching.As the key feature of the model,we introduced multibody-interaction parameters that establish correlations between the attaching and detaching rate constants and the resulting thickness and width of the crystalline lamella.Using MATLAB and Monte Carlo method,we followed the evolution of the secondary nuclei as a function of various multibody-interaction parameters.We identified three different growth progressions of the crystal:(i) Widening,(ii) thickening and(iii) simultaneously thickening and widening of lamellar crystals,controlled by the corresponding kinetic parameters. 展开更多
关键词 Computer simulation Secondary nucleation Polymer crystallization monte carlo simulation Microscopic kinetics model Multi-body interaction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部