The laser induced plasma dynamics of graphite material are investigated by optical emission spectroscopy. Abla- tion and excitation of the graphite material is performed by using an 1064nm Nd:YAG laser in different a...The laser induced plasma dynamics of graphite material are investigated by optical emission spectroscopy. Abla- tion and excitation of the graphite material is performed by using an 1064nm Nd:YAG laser in different ambient pressures. Characteristics of graphite spectra as line intensity variations and signal-to-noise ratio are presented with a main focus on the influence of the ambient pressure on the interaction of laser-induced graphite plasma with an ambient environment. Atomic emission lines are utilized to investigate the dynamical behavior of plasma, such as the excitation temperature and electron density, to describe emission differences under different ambient conditions. The excitation temperature and plasma electron density are the primary factors which contribute to the differences among the atomic carbon emission at different ambient pressures. Reactions between the plasma species and ambient gas, and the total molecular number are the main factors influencing molecular carbon emis- sion. The influence of laser energy on the plasma interaction with environment is also investigated to demonstrate the dynamical behavior of carbon species so that it can be utilized to optimize plasma fluctuations.展开更多
The aspiration of all wind turbine designers is to attain Betz’s upper limit, which represents the highest efficiency in wind energy extraction. Majority of working turbines operate slightly below this limit with an ...The aspiration of all wind turbine designers is to attain Betz’s upper limit, which represents the highest efficiency in wind energy extraction. Majority of working turbines operate slightly below this limit with an exception of a few operating in wind tunnels. This study proposes for a comprehensive reevaluation of Betz’s derivation, aiming to establish the gap between a theoretical power limit and a practical limit for realization. There are two common expressions for power coefficient giving the same optimal value of 59%, but they generate different power-coefficient curves when plotted against velocity ratios. This paper presents a new method being referred as “Direct Multiplication Fractional Change” (DMFC) for deriving power-coefficient curves in wind energy, and compares its generated curve with established models. Discrepancies in power-coefficient expressions are identified and harmonized. Three approaches, namely EVAM, LVM, and DMFCM, were used for the numerical derivation of cp in the study, with their evaluation summarized in a table. The study collaborates its findings with a formulated velocity-distance curve, commonly presented as a hypothetical velocity profile in some publications. The results from DMFCM indicate two distinct maxima for the power coefficient. On the front side of the disc, a maximum of 0.5 is achievable in practice, although it is not the highest theoretically. On the rear side, a theoretical maximum of 0.59 is observed, but this value is not attainable in practice. These maxima are separated by their positions along the line of flow relative to the disc. However, this approximation is limited to a streamlined flow model of the rotor disc.展开更多
Nanosecond pulsed discharges at atmospheric pressure in a pin-to-pin electrode configuration are well reproducible in time and space, which is beneficial to the fundamentals and applications of low-temperature plasmas...Nanosecond pulsed discharges at atmospheric pressure in a pin-to-pin electrode configuration are well reproducible in time and space, which is beneficial to the fundamentals and applications of low-temperature plasmas. In this experiment, the discharges in helium(He) and He with 2.3%water vapor(H_(2)O) are driven by a series of 10 ns overvoltage pulses(~13 k V). Special attention is paid to the spectral characteristics obtained in the center of discharges by time-resolved optical emission spectroscopy. It is found that in helium, the emission of atomic and molecular helium during the afterglow is more intense than that in the active discharge, while in the He+2.3%H_(2)O mixture, helium emission is only observed during the discharge pulse and the molecular helium emission disappears. In addition, the emissions of OH(A-X) and Hα present similar behavior that increases sharply during the falling edge of the voltage pulse as the electrons cool down rapidly. The gas temperature is set to remain low at 540 K by fitting the OH(A-X) band. A comparative study on the emission of radiative species(He, He_(2), OH and H)is performed between these two discharge cases to derive their main production mechanisms. In both cases, the dominant primary ion is He^(+) at the onset of discharges, but their He^(+) charge transfer processes are quite different. Based on these experimental data and a qualitative discussion on the discharge kinetics, with regard to the present discharge conditions, it is shown that the electron-assisted three-body recombination processes appear to be the significant sources of radiative OH and H species in high-density plasmas.展开更多
基金Supported by the FRGS under Grant No R.J130000.7809.4F519
文摘The laser induced plasma dynamics of graphite material are investigated by optical emission spectroscopy. Abla- tion and excitation of the graphite material is performed by using an 1064nm Nd:YAG laser in different ambient pressures. Characteristics of graphite spectra as line intensity variations and signal-to-noise ratio are presented with a main focus on the influence of the ambient pressure on the interaction of laser-induced graphite plasma with an ambient environment. Atomic emission lines are utilized to investigate the dynamical behavior of plasma, such as the excitation temperature and electron density, to describe emission differences under different ambient conditions. The excitation temperature and plasma electron density are the primary factors which contribute to the differences among the atomic carbon emission at different ambient pressures. Reactions between the plasma species and ambient gas, and the total molecular number are the main factors influencing molecular carbon emis- sion. The influence of laser energy on the plasma interaction with environment is also investigated to demonstrate the dynamical behavior of carbon species so that it can be utilized to optimize plasma fluctuations.
文摘The aspiration of all wind turbine designers is to attain Betz’s upper limit, which represents the highest efficiency in wind energy extraction. Majority of working turbines operate slightly below this limit with an exception of a few operating in wind tunnels. This study proposes for a comprehensive reevaluation of Betz’s derivation, aiming to establish the gap between a theoretical power limit and a practical limit for realization. There are two common expressions for power coefficient giving the same optimal value of 59%, but they generate different power-coefficient curves when plotted against velocity ratios. This paper presents a new method being referred as “Direct Multiplication Fractional Change” (DMFC) for deriving power-coefficient curves in wind energy, and compares its generated curve with established models. Discrepancies in power-coefficient expressions are identified and harmonized. Three approaches, namely EVAM, LVM, and DMFCM, were used for the numerical derivation of cp in the study, with their evaluation summarized in a table. The study collaborates its findings with a formulated velocity-distance curve, commonly presented as a hypothetical velocity profile in some publications. The results from DMFCM indicate two distinct maxima for the power coefficient. On the front side of the disc, a maximum of 0.5 is achievable in practice, although it is not the highest theoretically. On the rear side, a theoretical maximum of 0.59 is observed, but this value is not attainable in practice. These maxima are separated by their positions along the line of flow relative to the disc. However, this approximation is limited to a streamlined flow model of the rotor disc.
基金the funding provided by National Natural Science Foundation of China (No.12065019)Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 20KJB140025)+1 种基金the Open Fund of the Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province(No. JBGS032)the Scientific Research Project for the Introduction Talent of Yancheng Institute of Technology(Nos. XJR2020031 and XJR2021069)。
文摘Nanosecond pulsed discharges at atmospheric pressure in a pin-to-pin electrode configuration are well reproducible in time and space, which is beneficial to the fundamentals and applications of low-temperature plasmas. In this experiment, the discharges in helium(He) and He with 2.3%water vapor(H_(2)O) are driven by a series of 10 ns overvoltage pulses(~13 k V). Special attention is paid to the spectral characteristics obtained in the center of discharges by time-resolved optical emission spectroscopy. It is found that in helium, the emission of atomic and molecular helium during the afterglow is more intense than that in the active discharge, while in the He+2.3%H_(2)O mixture, helium emission is only observed during the discharge pulse and the molecular helium emission disappears. In addition, the emissions of OH(A-X) and Hα present similar behavior that increases sharply during the falling edge of the voltage pulse as the electrons cool down rapidly. The gas temperature is set to remain low at 540 K by fitting the OH(A-X) band. A comparative study on the emission of radiative species(He, He_(2), OH and H)is performed between these two discharge cases to derive their main production mechanisms. In both cases, the dominant primary ion is He^(+) at the onset of discharges, but their He^(+) charge transfer processes are quite different. Based on these experimental data and a qualitative discussion on the discharge kinetics, with regard to the present discharge conditions, it is shown that the electron-assisted three-body recombination processes appear to be the significant sources of radiative OH and H species in high-density plasmas.