The ether electrolytes usually outperform ester electrolytes by evaluating sodium-ion batteries(SIBs)rate performance,which is a near-unanimous conclusion of previous studies based on an essential configuration of the...The ether electrolytes usually outperform ester electrolytes by evaluating sodium-ion batteries(SIBs)rate performance,which is a near-unanimous conclusion of previous studies based on an essential configuration of the half-cell test.However,here we find that contrary to consensus,the ester electrolyte shows better Na storage capability than the ether electrolyte in full cells.An in-depth analysis of three-electrode,symmetric cell,and in situ XRD tests indicates that traditional half-cell test results are unreliable due to interference from Na electrodes.In particular,Na electrodes show a huge stability difference in ester and ether electrolytes,and ester electrolytes suffer more severe interference than ether electrolytes,resulting in the belief that esters are far inferior to ether electrolytes.More seriously,the more accurate three-electrode test would also suffer from Na electrode interference.Thus,a“corrected half-cell test”protocol is developed to shield the Na electrode interference,revealing the very close super rate capability of hard carbon in ester and ether electrolytes.This work breaks the inherent perception that the kinetic properties of ester electrolytes are inferior to ethers in sodium-ion batteries,reveals the pitfalls of half-cell tests,and proposes a new test protocol for reliable results,greatly accelerating the commercialization of sodium-ion batteries.展开更多
Measured mass flow rates and streamwise pressure distributions of gas flowing through microchannels were reported by many researchers. Assessment of these data is crucial before they are used in the examination of sli...Measured mass flow rates and streamwise pressure distributions of gas flowing through microchannels were reported by many researchers. Assessment of these data is crucial before they are used in the examination of slip models and numerical schemes, and in the design of microchannel elements in various MEMS devices. On the basis of kinetic solutions of the mass flow rates and pressure distributions in microchannel gas flows, the measured data available are properly normalized and then are compared with each other. The 69 normalized data of measured pressure distributions are in excellent agreement, and 67 of them are within 1 ± 0.05. The normalized data of mass flow-rates ranging between 0.95 and 1 agree well with each other as the inlet Knudsen number Kni 〈 0.02, but they scatter between 0.85 and 1.15 as Kni 〉 0.02 with. to some extent, a very interesting bifurcation trend.展开更多
基金supported by the National Natural Science Foundation of China(22179094)the Tianjin Research Program of Application Foundation and Advanced Technology of China(15ZCZDGX00270)
文摘The ether electrolytes usually outperform ester electrolytes by evaluating sodium-ion batteries(SIBs)rate performance,which is a near-unanimous conclusion of previous studies based on an essential configuration of the half-cell test.However,here we find that contrary to consensus,the ester electrolyte shows better Na storage capability than the ether electrolyte in full cells.An in-depth analysis of three-electrode,symmetric cell,and in situ XRD tests indicates that traditional half-cell test results are unreliable due to interference from Na electrodes.In particular,Na electrodes show a huge stability difference in ester and ether electrolytes,and ester electrolytes suffer more severe interference than ether electrolytes,resulting in the belief that esters are far inferior to ether electrolytes.More seriously,the more accurate three-electrode test would also suffer from Na electrode interference.Thus,a“corrected half-cell test”protocol is developed to shield the Na electrode interference,revealing the very close super rate capability of hard carbon in ester and ether electrolytes.This work breaks the inherent perception that the kinetic properties of ester electrolytes are inferior to ethers in sodium-ion batteries,reveals the pitfalls of half-cell tests,and proposes a new test protocol for reliable results,greatly accelerating the commercialization of sodium-ion batteries.
基金the National Natural Science Foundation of China(90205024.10621202 and 10425211).
文摘Measured mass flow rates and streamwise pressure distributions of gas flowing through microchannels were reported by many researchers. Assessment of these data is crucial before they are used in the examination of slip models and numerical schemes, and in the design of microchannel elements in various MEMS devices. On the basis of kinetic solutions of the mass flow rates and pressure distributions in microchannel gas flows, the measured data available are properly normalized and then are compared with each other. The 69 normalized data of measured pressure distributions are in excellent agreement, and 67 of them are within 1 ± 0.05. The normalized data of mass flow-rates ranging between 0.95 and 1 agree well with each other as the inlet Knudsen number Kni 〈 0.02, but they scatter between 0.85 and 1.15 as Kni 〉 0.02 with. to some extent, a very interesting bifurcation trend.