In this study, two polymeric resins with different pore sizes were synthesized to study comparative adsorption of reactive black KNB dye. Styrene-divinylbenzene copolymer resin NG-8 has an average pore size of 3.82 nm...In this study, two polymeric resins with different pore sizes were synthesized to study comparative adsorption of reactive black KNB dye. Styrene-divinylbenzene copolymer resin NG-8 has an average pore size of 3.82 nm, about half of that of polydivinylbenzene resin NG-7 (6.90 nm). NG-8 also has a surface acidity about 4 times that of NG-7, resulting in a much more negative surface of the former resin as compared to the latter at pH 6.05. Equilibrium adsorption of KNB was significantly influenced by the surface functionality of the resins, as evidenced by the observations that NG-8 adsorbed constantly less KNB than NG-7 and that the presence of CaCl2 enhanced the adsorption by both resins. The intra-particle diffusion appears to be the primary rate-limiting process. While the pores of both resins are accessible to KNB, the slower adsorption by NG-8 than by NG-7 suggests that the smaller pores of NG-8 further retard the intra-particle diffusion of KNB.展开更多
基金This work was financially support by the State Key Laboratory of Pollution Control and Resources Reuse, China (Tongji University, Grant PCRRF 05003).
文摘In this study, two polymeric resins with different pore sizes were synthesized to study comparative adsorption of reactive black KNB dye. Styrene-divinylbenzene copolymer resin NG-8 has an average pore size of 3.82 nm, about half of that of polydivinylbenzene resin NG-7 (6.90 nm). NG-8 also has a surface acidity about 4 times that of NG-7, resulting in a much more negative surface of the former resin as compared to the latter at pH 6.05. Equilibrium adsorption of KNB was significantly influenced by the surface functionality of the resins, as evidenced by the observations that NG-8 adsorbed constantly less KNB than NG-7 and that the presence of CaCl2 enhanced the adsorption by both resins. The intra-particle diffusion appears to be the primary rate-limiting process. While the pores of both resins are accessible to KNB, the slower adsorption by NG-8 than by NG-7 suggests that the smaller pores of NG-8 further retard the intra-particle diffusion of KNB.