High quality In2S3 kinks were synthesized via a kinetically controlled thermal deposition process and their optoelectronic characteristics were systematically explored. The growth mechanism was attributed to the combi...High quality In2S3 kinks were synthesized via a kinetically controlled thermal deposition process and their optoelectronic characteristics were systematically explored. The growth mechanism was attributed to the combination of kinetic dynamic, crystal fadal energy, and surface roughness. Two trap induced emission bands were evidenced via a low temperature cathodoluminescence (CL) study. Furthermore, the nanowire junctions demonstrated a degenerative photodetection performance, as compared to the straight arms, attributed to a stress-induced extra series resistance measured from the kinked area. The well-controllable shape of the inorganic nanostructures and the detailed exploration of their optoelectronic properties are particularly valuable for their further practical applications.展开更多
Hexagram shaped gold particles and their analogues enclosed by high index facets with kinks have been successfully synthesized by reducing HAuCl4 with ascorbic acid (AA) in the presence of poly(diallyldimethylammon...Hexagram shaped gold particles and their analogues enclosed by high index facets with kinks have been successfully synthesized by reducing HAuCl4 with ascorbic acid (AA) in the presence of poly(diallyldimethylammonium chloride) at room temperature. By using electron microscopy, the surfaces of the hexagram shaped Au particle were found to be {541} planes, which contain high-density steps and kinks. In addition, it was found that hexagonal shield-like and other kind of particles present in the product were analogues of the hexagram shaped Au particles structure, in that they had the same surface structure. In order to confirm the surface structure of all the prepared particles, surface structure sensitive underpotential deposition of Pb was carried out, and the cyclic voltammetric profile was in accordance with the proposed {541} surface. Finally, structure-property relationships of the Au hexagrams were experimentally analyzed by employing the electrocatalytic oxidation of AA as a probe reaction. The electrocatalytic reactions of gold cubes with low-index {100} facets and gold trioctahedra with {221} facets were studied as references. The experimental results showed that the hexagram shaped Au particles and their analogues with exposed {541} facets have the highest catalytic activity among the three kinds of gold particles, owing to the high density of kink atoms. This study should motivate us to further explore methods for the preparation of other well-defined polyhedral metal nanocrystals enclosed by high index surfaces.展开更多
The Mg-Y-Zn magnesium alloy system is commonly recognized for its remarkable combination of high strength and ductility,achieved even with minimal amounts of alloying elements.This exceptional performance is attribute...The Mg-Y-Zn magnesium alloy system is commonly recognized for its remarkable combination of high strength and ductility,achieved even with minimal amounts of alloying elements.This exceptional performance is attributed to its unique microstructure,which includes Long-Period Stacking Ordered(LPSO)phases or the distinctive microstructure derived from the LPSO phase,referred to as the Mille-Feuille structure(MFS).This study systematically compares the traditional ingot metallurgy method with the rapid solidification technique,coupled with diverse heat treatments and extrusion processes.Microscopic analyses reveal variations in the presence of LPSO phases,Mille-Feuille structure,and grain size,leading to divergent mechanical and corrosion properties.The rapid solidification approach stands out,ensuring superior mechanical properties alongside a reasonable corrosion rate.展开更多
With the analysis of experiment and theory on GaN HEMT devices under DC sweep,an improved model for kink effect based on advanced SPICE model for high electron mobility transistors(ASM-HEMT)is pro⁃posed,considering th...With the analysis of experiment and theory on GaN HEMT devices under DC sweep,an improved model for kink effect based on advanced SPICE model for high electron mobility transistors(ASM-HEMT)is pro⁃posed,considering the relationship between the drain/gate-source voltage and kink effect.The improved model can not only accurately describe the trend of the drain-source current with the current collapse and kink effect,but also precisely fit different values of drain-source voltages at which the kink effect occurs under different gatesource voltages.Furthermore,it well characterizes the DC characteristics of GaN devices in the full operating range,with the fitting error less than 3%.To further verify the accuracy and convergence of the improved model,a load-pull system is built in ADS.The simulated result shows that although both the original ASM-HEMT and the improved model predict the output power for the maximum power matching of GaN devices well,the im⁃proved model predicts the power-added efficiency for the maximum efficiency matching more accurately,with 4%improved.展开更多
In this paper we present a new experimental observation using a conventional reflectometry technique,poloidal correlation reflectometry(PCR),in the Experimental Advanced Superconducting Tokamak(EAST).The turbulence sp...In this paper we present a new experimental observation using a conventional reflectometry technique,poloidal correlation reflectometry(PCR),in the Experimental Advanced Superconducting Tokamak(EAST).The turbulence spectrum detected by the PCR system exhibits an asymmetry and induced Doppler shift f_(D)during the internal kink mode(IKM)rotation phase.This Doppler shift f_(D)is the target measurement of Doppler reflectometry,but captured by conventional reflectometry.Results show that the Doppler shift f_(D)is modulated by the periodic changes in the effective angle between the probing wave and cutoff layer normal,but not by plasma turbulence.The fishbone mode and saturated long-lived mode are typical IKMs,and this modulation phenomenon is observed in both cases.Moreover,the value of the Doppler shift f_(D)is positively correlated with the amplitude of the IKM,even when the latter is small.However,the positive and negative frequency components of the Doppler shift f_(D)can be asymmetric,which is related to the plasma configuration.A simulated analysis is performed by ray tracing to verify these observations.These results establish a clear link between f_(D)and IKM rotation,and are helpful for studying the characteristics of IKM and related physical phenomena.展开更多
With growing uncertainties in world trade, the economy, climate change and many other issues, the leaders of 19 courn tries and the European Union as members of the Group of 20(G20),as well as 17 guest countries and i...With growing uncertainties in world trade, the economy, climate change and many other issues, the leaders of 19 courn tries and the European Union as members of the Group of 20(G20),as well as 17 guest countries and international organizations met in Osaka, Japan, for two days to seek possible solutions.展开更多
In parametrically excited Faraday experiment the non-propagating solitons-breathers, kinksand breather pairs-have been observed at the interface of two insoluble liquids with different densities.Phenomena observed at ...In parametrically excited Faraday experiment the non-propagating solitons-breathers, kinksand breather pairs-have been observed at the interface of two insoluble liquids with different densities.Phenomena observed at the interface are similar to those on the surface, except that the eigenfrequencies are remarkably red-shifted, and the wave forms are flatter and less stable due to the presence of the upper liquid. A nonlinear Schrodinger equation with damping and drive terms has been derived to explain the new observations. Both experiment and theory show that the free surface wave is a special case of the interface wave.展开更多
Deformation kink is one of the important strengthening mechanisms of the long-period-stacking-ordered(LPSO)phase containing magnesium(Mg)alloys,while the deformation twin is generally suppressed.To optimize the mechan...Deformation kink is one of the important strengthening mechanisms of the long-period-stacking-ordered(LPSO)phase containing magnesium(Mg)alloys,while the deformation twin is generally suppressed.To optimize the mechanical properties of LPSO containing Mg alloy by simultaneously exciting kink and twin,we successfully prepared the Mg-Zn-Y-Zr alloy featuring intragranular LPSO phase and free grain boundary LPSO phase by homogenization.We unraveled the corresponding strengthening and toughening mechanisms through transmission electron microscopy characterization and theoretical analysis.The high strength and good plasticity of the homogenized alloy benefit from the synergistic deformation mechanism of multiple kinking and twining in the grains.And the activation of kinking and twinning depends on the thicknesses of LPSO lamellae and their relative spacing.These results may shed light on optimizing the design of Mg alloys regulating the microstructure of LPSO phases.展开更多
The local deformation behavior and dynamic recrystallization of a shock compressed Mg-1Zn alloy was investigated through EBSD and TEM.Since dislocation slipping and twinning were locally suppressed during high strain-...The local deformation behavior and dynamic recrystallization of a shock compressed Mg-1Zn alloy was investigated through EBSD and TEM.Since dislocation slipping and twinning were locally suppressed during high strain-rate deformation,a more flexible kinking deformation was activated to adjusted local orientation and facilitate slipping and twinning within the kinks.Meanwhile,due to the slow heat dissipation that resulted in a local temperature elevating,the kink bands were evolved into deformation bands with recrystallized nano-grains.Such a finding provides a new perspective for kinking-facilitated nanocrystallization in Mg alloys and other anisotropic metallic materials.展开更多
Transport of fast ions is a crucial issue during the operation of ITER.Redistribution of neutral beam injection(NBI)fast ions by the ideal internal magnetohydrodynamic(MHD)instabilities in ITER is studied utilizing th...Transport of fast ions is a crucial issue during the operation of ITER.Redistribution of neutral beam injection(NBI)fast ions by the ideal internal magnetohydrodynamic(MHD)instabilities in ITER is studied utilizing the guiding-center code ORBIT(White R B and Chance M S 1984Phys.Fluids 272455).Effects of the perturbation amplitude A of the internal kink,the perturbation frequency f of the fishbone instability,and the toroidal mode number n of the internal kink are investigated,respectively,in this work.The n=1 internal kink mode can cause NBI fast ions transporting in real space from regions of 0<s≤0.32 to 0.32<s≤0.53,where s labels the normalized plasma radial coordinate.The transport of fast ions is greater as the perturbation amplitude increases.The maximum relative change of the number of fast ions approaches 5%when the perturbation amplitude rises to 500 G.A strong transport is generated between the regions of 0<s≤0.05 and 0.05<s≤0.12 in the presence of the fishbone instability.Higher frequency results in greater transport,and the number of fast ions in 0<s≤0.05 is reduced by 30%at the fishbone frequency of 100 k Hz.Perturbations with higher n will lead to the excursion of fast ion transport regions outward along the radial direction.The loss of fast ions,however,is not affected by the internal MHD perturbation.Strong transport from 0<s≤0.05 to 0.05<s≤0.12 does not influence the plasma heating power of ITER,since the NBI fast ions are still located in the plasma core.On the other hand,the influence of fast ion transport from 0<s≤0.32 to 0.32<s≤0.53 needs further study.展开更多
Quantum-dot cellular automata(QCA)is an emerging computational paradigm which can overcome scaling limitations of the existing complementary metal oxide semiconductor(CMOS)technology.The existence of defects cannot be...Quantum-dot cellular automata(QCA)is an emerging computational paradigm which can overcome scaling limitations of the existing complementary metal oxide semiconductor(CMOS)technology.The existence of defects cannot be ignored,considering the fabrication of QCA devices at the molecular level where it could alter the functionality.Therefore,defects in QCA devices need to be analyzed.So far,the simulation-based displacement defect analysis has been presented in the literature,which results in an increased demand in the corresponding mathematical model.In this paper,the displacement defect analysis of the QCA main primitive,majority voter(MV),is presented and carried out both in simulation and mathematics,where the kink energy based mathematical model is applied.The results demonstrate that this model is valid for the displacement defect in QCA MV.展开更多
A novel low temperature poly\|Si(LTPS) ultra\|thin channel thin film transistor (UTC\|TFT) technology is proposed. The UTC\|TFT has an ultra\|thin channel region (30nm) and a thick drain/source region (300nm). The ult...A novel low temperature poly\|Si(LTPS) ultra\|thin channel thin film transistor (UTC\|TFT) technology is proposed. The UTC\|TFT has an ultra\|thin channel region (30nm) and a thick drain/source region (300nm). The ultra\|thin channel region that can result in a lower grain\|boundary trap density in the channel is connected to the heavily\|doped thick drain/source region through a lightly\|doped overlapped region. The overlapped lightly\|doped region provides an effective way for the electric field to spread in the channel near the drain at high drain biases, thereby reducing the electric field there significantly. Simulation results show the UTC\|TFT experiences a 50% reduction in peak lateral electric field compared to that of the conventional TFT. With the low grain\|boundary trap density and low drain electric field, excellent current saturation characteristics and high drain breakdown voltage are achieved in the UTC\|TFT. Moreover, this technology provides the complementary LTPS\|TFTs with more than 2 times increase in on\|current, 3.5 times reduction in off\|current compared to the conventional thick channel LTPS TFTs.展开更多
FB (floating-body) and BC (body-contact) partially depleted SOI nMOSFETs with HBC(half-back-channel) implantation are fabricated. Test results show that such devices have good performance in delaying the occurre...FB (floating-body) and BC (body-contact) partially depleted SOI nMOSFETs with HBC(half-back-channel) implantation are fabricated. Test results show that such devices have good performance in delaying the occurrence of the “kink” phenomenon and improving the breakdown voltage as compared to conventional PDSOI nMOS- FETs,while not decreasing the threshold voltage of the back gate obviously. Numerical simulation shows that a reduced electrical field in the drain contributes to the improvement of the breakdown voltage and a delay of the “kink” effect. A detailed analysis is given for the cause of such improvement of breakdown voltage and the delay of the “kink” effect.展开更多
In this paper, we find a new large scale instability which appears in obliquely rotating flow with the small scale turbulence, generated by external force with small Reynolds number. The external force has no helicity...In this paper, we find a new large scale instability which appears in obliquely rotating flow with the small scale turbulence, generated by external force with small Reynolds number. The external force has no helicity. The theory is based on the rigorous method of multi-scale asymptotic expansion. Nonlinear equations for instability are obtained in the third order of the perturbation theory. In this article, we explain in detail the nonlinear stage of the instability and we find the nonlinear periodic vortices and the vortex kinks of Beltrami type.展开更多
A new physical current-voltage model for polysilicon thin-film transistors (poly-Si TFTs) is presented. Taking the V-shaped exponential distribution of trap states density into consideration,explicit calculation of ...A new physical current-voltage model for polysilicon thin-film transistors (poly-Si TFTs) is presented. Taking the V-shaped exponential distribution of trap states density into consideration,explicit calculation of surface potential is derived using the Lambert W function, which greatly improves computational efficiency and is critical in circuit simulation. Based on the exponential density of trap states and the calculated surface potential, the drain current characteristics of the subthreshold and the strong inversion region are predicted. A complete and unique drain current expression, including kink effect, is deduced. The model and the experimental data agree well over a wide range of channel lengths and operational regions.展开更多
基金This work was supported by the National Natural Science Foundation of China (Nos. 21322106, 51472097 and 51402114), National Basic Research Program of China (No. 2015CB932600), Program for HUST Inter- disciplinary Innovation Team (No. 2015ZDTD038) and the Fundamental Research Funds for the Central Uni- versities. The authors thank the Analytical and Testing Centre of Huazhong University of Science and Tech- nology.
文摘High quality In2S3 kinks were synthesized via a kinetically controlled thermal deposition process and their optoelectronic characteristics were systematically explored. The growth mechanism was attributed to the combination of kinetic dynamic, crystal fadal energy, and surface roughness. Two trap induced emission bands were evidenced via a low temperature cathodoluminescence (CL) study. Furthermore, the nanowire junctions demonstrated a degenerative photodetection performance, as compared to the straight arms, attributed to a stress-induced extra series resistance measured from the kinked area. The well-controllable shape of the inorganic nanostructures and the detailed exploration of their optoelectronic properties are particularly valuable for their further practical applications.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 20725310, 21021061, and 21073145), the National Basic Research Program of China (Grant No. 2007CB815303 and 2009CB939804) and Program for New Century Excellent Talents in Fujian Province Universities.
文摘Hexagram shaped gold particles and their analogues enclosed by high index facets with kinks have been successfully synthesized by reducing HAuCl4 with ascorbic acid (AA) in the presence of poly(diallyldimethylammonium chloride) at room temperature. By using electron microscopy, the surfaces of the hexagram shaped Au particle were found to be {541} planes, which contain high-density steps and kinks. In addition, it was found that hexagonal shield-like and other kind of particles present in the product were analogues of the hexagram shaped Au particles structure, in that they had the same surface structure. In order to confirm the surface structure of all the prepared particles, surface structure sensitive underpotential deposition of Pb was carried out, and the cyclic voltammetric profile was in accordance with the proposed {541} surface. Finally, structure-property relationships of the Au hexagrams were experimentally analyzed by employing the electrocatalytic oxidation of AA as a probe reaction. The electrocatalytic reactions of gold cubes with low-index {100} facets and gold trioctahedra with {221} facets were studied as references. The experimental results showed that the hexagram shaped Au particles and their analogues with exposed {541} facets have the highest catalytic activity among the three kinds of gold particles, owing to the high density of kink atoms. This study should motivate us to further explore methods for the preparation of other well-defined polyhedral metal nanocrystals enclosed by high index surfaces.
基金supported by Japan Society for the Promotion of Science(KAKENHI Grant-in-Aid for Scientific Research18H05475,18H05476 and JP20H00312)+2 种基金MRC International Collaborative Research Grant.The authors would like to thank the Czech Science Foundation(Project No.22-22248S)specific university research(A1_FCHT_2024_007)for financial supportthe assistance provided by the Ferroic Multifunctionalities project,supported by the Ministry of Education,Youth,and Sports of the Czech Republic.Project No.CZ.02.01.01/00/22_008/0004591,co-funded by the European Union.CzechNanoLab project LM2023051 funded by MEYS CR is gratefully acknowledged for the financial support of the measurements/sample fabrication at LNSM Research Infrastructure.
文摘The Mg-Y-Zn magnesium alloy system is commonly recognized for its remarkable combination of high strength and ductility,achieved even with minimal amounts of alloying elements.This exceptional performance is attributed to its unique microstructure,which includes Long-Period Stacking Ordered(LPSO)phases or the distinctive microstructure derived from the LPSO phase,referred to as the Mille-Feuille structure(MFS).This study systematically compares the traditional ingot metallurgy method with the rapid solidification technique,coupled with diverse heat treatments and extrusion processes.Microscopic analyses reveal variations in the presence of LPSO phases,Mille-Feuille structure,and grain size,leading to divergent mechanical and corrosion properties.The rapid solidification approach stands out,ensuring superior mechanical properties alongside a reasonable corrosion rate.
基金Supported by the National Key R&D Program of China(2022YFF0707800,2022YFF0707801)Primary Research&Development Plan of Jiangsu Province(BE2022070,BE2022070-2)。
文摘With the analysis of experiment and theory on GaN HEMT devices under DC sweep,an improved model for kink effect based on advanced SPICE model for high electron mobility transistors(ASM-HEMT)is pro⁃posed,considering the relationship between the drain/gate-source voltage and kink effect.The improved model can not only accurately describe the trend of the drain-source current with the current collapse and kink effect,but also precisely fit different values of drain-source voltages at which the kink effect occurs under different gatesource voltages.Furthermore,it well characterizes the DC characteristics of GaN devices in the full operating range,with the fitting error less than 3%.To further verify the accuracy and convergence of the improved model,a load-pull system is built in ADS.The simulated result shows that although both the original ASM-HEMT and the improved model predict the output power for the maximum power matching of GaN devices well,the im⁃proved model predicts the power-added efficiency for the maximum efficiency matching more accurately,with 4%improved.
基金supported by the National Key R&D Program of China(Nos.2022YFE03050003,2022YFE03020004,2019YFE03080200 and 2022YFE03070004)National Natural Science Foundation of China(Nos.12275315,11875289,12175277 and 11975271)+3 种基金partly supported by the Youth Science and Technology Talents Support Program(2020)by Anhui Association for Science and Technology(No.RCTJ202009)the Science Foundation of Institute of Plasma Physics,Chinese Academy of Sciences(No.DSJJ2021-08)the China Postdoctoral Science Foundation(No.2021M703256)the Director Funding of Hefei Institutes of Physical Science,Chinese Academy of Sciences(No.YZJJ2022QN16)。
文摘In this paper we present a new experimental observation using a conventional reflectometry technique,poloidal correlation reflectometry(PCR),in the Experimental Advanced Superconducting Tokamak(EAST).The turbulence spectrum detected by the PCR system exhibits an asymmetry and induced Doppler shift f_(D)during the internal kink mode(IKM)rotation phase.This Doppler shift f_(D)is the target measurement of Doppler reflectometry,but captured by conventional reflectometry.Results show that the Doppler shift f_(D)is modulated by the periodic changes in the effective angle between the probing wave and cutoff layer normal,but not by plasma turbulence.The fishbone mode and saturated long-lived mode are typical IKMs,and this modulation phenomenon is observed in both cases.Moreover,the value of the Doppler shift f_(D)is positively correlated with the amplitude of the IKM,even when the latter is small.However,the positive and negative frequency components of the Doppler shift f_(D)can be asymmetric,which is related to the plasma configuration.A simulated analysis is performed by ray tracing to verify these observations.These results establish a clear link between f_(D)and IKM rotation,and are helpful for studying the characteristics of IKM and related physical phenomena.
文摘With growing uncertainties in world trade, the economy, climate change and many other issues, the leaders of 19 courn tries and the European Union as members of the Group of 20(G20),as well as 17 guest countries and international organizations met in Osaka, Japan, for two days to seek possible solutions.
基金Project supported by the National Basic Research Project of Nonlinear ScienceNingbo Youngster Science Foundation.
文摘In parametrically excited Faraday experiment the non-propagating solitons-breathers, kinksand breather pairs-have been observed at the interface of two insoluble liquids with different densities.Phenomena observed at the interface are similar to those on the surface, except that the eigenfrequencies are remarkably red-shifted, and the wave forms are flatter and less stable due to the presence of the upper liquid. A nonlinear Schrodinger equation with damping and drive terms has been derived to explain the new observations. Both experiment and theory show that the free surface wave is a special case of the interface wave.
基金This work was supported by the National Natural Science Foundation of China(Grant No.52101015,52171021,and 51871222)Natural Science Foundation of Hebei Province(Grant No.E2020208083)Science and Technology Research Project of Colleges and Universities in Hebei Province(Grant No.BJK2022020).
文摘Deformation kink is one of the important strengthening mechanisms of the long-period-stacking-ordered(LPSO)phase containing magnesium(Mg)alloys,while the deformation twin is generally suppressed.To optimize the mechanical properties of LPSO containing Mg alloy by simultaneously exciting kink and twin,we successfully prepared the Mg-Zn-Y-Zr alloy featuring intragranular LPSO phase and free grain boundary LPSO phase by homogenization.We unraveled the corresponding strengthening and toughening mechanisms through transmission electron microscopy characterization and theoretical analysis.The high strength and good plasticity of the homogenized alloy benefit from the synergistic deformation mechanism of multiple kinking and twining in the grains.And the activation of kinking and twinning depends on the thicknesses of LPSO lamellae and their relative spacing.These results may shed light on optimizing the design of Mg alloys regulating the microstructure of LPSO phases.
基金supported by National Natural Science Foundation of China(No.51701121,No.51825101)Shanghai Sailing Program(No.17YF1408800)+2 种基金Laboratory of Intense Dynamic Loading and Effect Foundation of China(No.IDEL1908)Startup Fund for Youngman Research at SJTU(No.18×100040022)Science and Technology Commission of Shanghai Municipality(No.18511109302).
文摘The local deformation behavior and dynamic recrystallization of a shock compressed Mg-1Zn alloy was investigated through EBSD and TEM.Since dislocation slipping and twinning were locally suppressed during high strain-rate deformation,a more flexible kinking deformation was activated to adjusted local orientation and facilitate slipping and twinning within the kinks.Meanwhile,due to the slow heat dissipation that resulted in a local temperature elevating,the kink bands were evolved into deformation bands with recrystallized nano-grains.Such a finding provides a new perspective for kinking-facilitated nanocrystallization in Mg alloys and other anisotropic metallic materials.
基金supported by the National Key Research and Development Program of China(Nos.2022YFE03060002,2019YFE03090100)by the Innovation Program of Southwestern Institute of Physics(No.202001XWCXRC001)partly supported by the Youth Science and Technology Innovation Team of Sichuan Province(No.2022JDTD0003)。
文摘Transport of fast ions is a crucial issue during the operation of ITER.Redistribution of neutral beam injection(NBI)fast ions by the ideal internal magnetohydrodynamic(MHD)instabilities in ITER is studied utilizing the guiding-center code ORBIT(White R B and Chance M S 1984Phys.Fluids 272455).Effects of the perturbation amplitude A of the internal kink,the perturbation frequency f of the fishbone instability,and the toroidal mode number n of the internal kink are investigated,respectively,in this work.The n=1 internal kink mode can cause NBI fast ions transporting in real space from regions of 0<s≤0.32 to 0.32<s≤0.53,where s labels the normalized plasma radial coordinate.The transport of fast ions is greater as the perturbation amplitude increases.The maximum relative change of the number of fast ions approaches 5%when the perturbation amplitude rises to 500 G.A strong transport is generated between the regions of 0<s≤0.05 and 0.05<s≤0.12 in the presence of the fishbone instability.Higher frequency results in greater transport,and the number of fast ions in 0<s≤0.05 is reduced by 30%at the fishbone frequency of 100 k Hz.Perturbations with higher n will lead to the excursion of fast ion transport regions outward along the radial direction.The loss of fast ions,however,is not affected by the internal MHD perturbation.Strong transport from 0<s≤0.05 to 0.05<s≤0.12 does not influence the plasma heating power of ITER,since the NBI fast ions are still located in the plasma core.On the other hand,the influence of fast ion transport from 0<s≤0.32 to 0.32<s≤0.53 needs further study.
文摘Quantum-dot cellular automata(QCA)is an emerging computational paradigm which can overcome scaling limitations of the existing complementary metal oxide semiconductor(CMOS)technology.The existence of defects cannot be ignored,considering the fabrication of QCA devices at the molecular level where it could alter the functionality.Therefore,defects in QCA devices need to be analyzed.So far,the simulation-based displacement defect analysis has been presented in the literature,which results in an increased demand in the corresponding mathematical model.In this paper,the displacement defect analysis of the QCA main primitive,majority voter(MV),is presented and carried out both in simulation and mathematics,where the kink energy based mathematical model is applied.The results demonstrate that this model is valid for the displacement defect in QCA MV.
文摘A novel low temperature poly\|Si(LTPS) ultra\|thin channel thin film transistor (UTC\|TFT) technology is proposed. The UTC\|TFT has an ultra\|thin channel region (30nm) and a thick drain/source region (300nm). The ultra\|thin channel region that can result in a lower grain\|boundary trap density in the channel is connected to the heavily\|doped thick drain/source region through a lightly\|doped overlapped region. The overlapped lightly\|doped region provides an effective way for the electric field to spread in the channel near the drain at high drain biases, thereby reducing the electric field there significantly. Simulation results show the UTC\|TFT experiences a 50% reduction in peak lateral electric field compared to that of the conventional TFT. With the low grain\|boundary trap density and low drain electric field, excellent current saturation characteristics and high drain breakdown voltage are achieved in the UTC\|TFT. Moreover, this technology provides the complementary LTPS\|TFTs with more than 2 times increase in on\|current, 3.5 times reduction in off\|current compared to the conventional thick channel LTPS TFTs.
文摘FB (floating-body) and BC (body-contact) partially depleted SOI nMOSFETs with HBC(half-back-channel) implantation are fabricated. Test results show that such devices have good performance in delaying the occurrence of the “kink” phenomenon and improving the breakdown voltage as compared to conventional PDSOI nMOS- FETs,while not decreasing the threshold voltage of the back gate obviously. Numerical simulation shows that a reduced electrical field in the drain contributes to the improvement of the breakdown voltage and a delay of the “kink” effect. A detailed analysis is given for the cause of such improvement of breakdown voltage and the delay of the “kink” effect.
文摘In this paper, we find a new large scale instability which appears in obliquely rotating flow with the small scale turbulence, generated by external force with small Reynolds number. The external force has no helicity. The theory is based on the rigorous method of multi-scale asymptotic expansion. Nonlinear equations for instability are obtained in the third order of the perturbation theory. In this article, we explain in detail the nonlinear stage of the instability and we find the nonlinear periodic vortices and the vortex kinks of Beltrami type.
文摘A new physical current-voltage model for polysilicon thin-film transistors (poly-Si TFTs) is presented. Taking the V-shaped exponential distribution of trap states density into consideration,explicit calculation of surface potential is derived using the Lambert W function, which greatly improves computational efficiency and is critical in circuit simulation. Based on the exponential density of trap states and the calculated surface potential, the drain current characteristics of the subthreshold and the strong inversion region are predicted. A complete and unique drain current expression, including kink effect, is deduced. The model and the experimental data agree well over a wide range of channel lengths and operational regions.