In the present paper,we prove the existence,non-existence and multiplicity of positive normalized solutions(λ_(c),u_(c))∈ℝ×H^(1)(ℝ^(N))to the general Kirchhoff problem-M\left(\int_{\mathbb{R}^N}\vert\nabla u\ve...In the present paper,we prove the existence,non-existence and multiplicity of positive normalized solutions(λ_(c),u_(c))∈ℝ×H^(1)(ℝ^(N))to the general Kirchhoff problem-M\left(\int_{\mathbb{R}^N}\vert\nabla u\vert^2{\rm d}x\right)\Delta u+\lambda u=g(u)~\hbox{in}~\mathbb{R}^N,u\in H^1(\mathbb{R}^N),N\geq 1,satisfying the normalization constraint\int_{\mathbb{R}^N}u^2{\rm d}x=c,where M∈C([0,∞))is a given function satisfying some suitable assumptions.Our argument is not by the classical variational method,but by a global branch approach developed by Jeanjean et al.[J Math Pures Appl,2024,183:44–75]and a direct correspondence,so we can handle in a unified way the nonlinearities g(s),which are either mass subcritical,mass critical or mass supercritical.展开更多
In this paper,we study the existence and local uniqueness of multi-peak solutions to the Kirchhoff type equations-(ε^(2)a+εb∫_(R^(3))|■u|^(2))△u+V(x)u=u^(p),u>0 in R^(3),which concentrate at non-degenerate cri...In this paper,we study the existence and local uniqueness of multi-peak solutions to the Kirchhoff type equations-(ε^(2)a+εb∫_(R^(3))|■u|^(2))△u+V(x)u=u^(p),u>0 in R^(3),which concentrate at non-degenerate critical points of the potential function V(x),where a,b>0,1<p<5 are constants,andε>0 is a parameter.Applying the Lyapunov-Schmidt reduction method and a local Pohozaev type identity,we establish the existence and local uniqueness results of multi-peak solutions,which concentrate at{a_(i)}1≤i≤k,where{a_(i)}1≤i≤k are non-degenerate critical points of V(x)asε→0.展开更多
In the present paper, we consider the problem {-△u=u^(β_(1))|■u|^(β_(2)),in Ω,u=0,on ■Ω,u>0,in Ω,(0.1) where β_(1), β_(2) > 0 and β_(1) + β_(2) < 1, and Ω is a convex domain in R~n. The existence...In the present paper, we consider the problem {-△u=u^(β_(1))|■u|^(β_(2)),in Ω,u=0,on ■Ω,u>0,in Ω,(0.1) where β_(1), β_(2) > 0 and β_(1) + β_(2) < 1, and Ω is a convex domain in R~n. The existence, uniqueness,regularity and (2-β_(2))/(1-β_(1)-β_(2))-concavity of the positive solutions of the problem(0.1) are proven.展开更多
Solitons and bifurcations for the generalized Tzitzéica type equation are studied by using the theory of dynamical systems and Hamilton function. With the help of Maple and bifurcation theory of differential equa...Solitons and bifurcations for the generalized Tzitzéica type equation are studied by using the theory of dynamical systems and Hamilton function. With the help of Maple and bifurcation theory of differential equations, the bifurcation parameter conditions and all the bifurcation phase portraits are obtained. Because the same energy value of the Hamiltonian function is corresponding to the same orbit, thus the periodic wave solutions, bright soliton and dark soliton solutions are defined.展开更多
In this paper, we study the long time behavior of a class of generalized Beam-Kirchhoff equation , and prove the existence and uniqueness of the global solution of this class of equation by Galerkin method by making s...In this paper, we study the long time behavior of a class of generalized Beam-Kirchhoff equation , and prove the existence and uniqueness of the global solution of this class of equation by Galerkin method by making some assumptions about the nonlinear function term . The existence of the family of global attractor and its Hausdorff dimension and Fractal dimension estimation are proved.展开更多
In this paper, we study the following Schrödinger-Kirchhoff equation where V(x) ≥ 0 and vanishes on an open set of R<sup>2</sup> and f has critical exponential growth. By using a version of Trudinger...In this paper, we study the following Schrödinger-Kirchhoff equation where V(x) ≥ 0 and vanishes on an open set of R<sup>2</sup> and f has critical exponential growth. By using a version of Trudinger-Moser inequality and variational methods, we obtain the existence of ground state solutions for this problem.展开更多
In this paper, we discuss the existence and uniqueness of global solutions, the existence of the family of global attractors and its dimension estimation for generalized Beam-Kirchhoff equation under initial condition...In this paper, we discuss the existence and uniqueness of global solutions, the existence of the family of global attractors and its dimension estimation for generalized Beam-Kirchhoff equation under initial conditions and boundary conditions, using the previous research results for reference. Firstly, the existence of bounded absorption set is proved by using a prior estimation, then the existence and uniqueness of the global solution of the problem is proved by using the classical Galerkin’s method. Finally, Housdorff dimension and fractal dimension of the family of global attractors are estimated by linear variational method and generalized Sobolev-Lieb-Thirring inequality.展开更多
In this paper, we concern with the following fourth order elliptic equations of Kirchhoff type {Δ^2u-(a+bfR^3|↓△u|^2dx)△u+V(x)u=f(x,u),x∈R^3, u∈H^2(R3),where a, b 〉 0 are constants and the primitive...In this paper, we concern with the following fourth order elliptic equations of Kirchhoff type {Δ^2u-(a+bfR^3|↓△u|^2dx)△u+V(x)u=f(x,u),x∈R^3, u∈H^2(R3),where a, b 〉 0 are constants and the primitive of the nonlinearity f is of superlinear growth near infinity in u and is also allowed to be sign-changing. By using variational methods, we establish the existence and multiplicity of solutions. Our conditions weaken the Ambrosetti- Rabinowitz type condition.展开更多
In this article, we study the multiplicity and concentration behavior of positive solutions for the p-Laplacian equation of SchrSdinger-Kirchhoff type -εpM(εp-N∫RN|△u|p)△pu+v(x|u|p-2u=f(u)in RN, where ...In this article, we study the multiplicity and concentration behavior of positive solutions for the p-Laplacian equation of SchrSdinger-Kirchhoff type -εpM(εp-N∫RN|△u|p)△pu+v(x|u|p-2u=f(u)in RN, where △p is the p-Laplacian operator, 1 〈 p 〈 N, M : R+ → R+ and V : RN →R+ are continuous functions, ε is a positive parameter, and f is a continuous function with subcritical growth. We assume that V satisfies the local condition introduced by M. del Pino and P. Felmer. By the variational methods, penalization techniques, and Lyusternik- Schnirelmann theory, we prove the existence, multiplicity, and concentration of solutions for the above equation.展开更多
In this article, we consider the global existence and decay rates of solutions for the transmission problem of Kirchhoff type wave equations consisting of two physi- cally different types of materials, one component i...In this article, we consider the global existence and decay rates of solutions for the transmission problem of Kirchhoff type wave equations consisting of two physi- cally different types of materials, one component is a Kirchhoff type wave equation with nonlinear time dependent localized dissipation which is effective only on a neighborhood of certain part of the boundary, while the other is a Kirchhoff type wave equation with nonlinear memory.展开更多
This paper is mainly concerned with existence and nonexistence results for solutions to the Kirchhoff type equation−(a+b∫_(R^(3))|∇u|^(2))Δu+V(x)u=f(u)in R^(3),with the general hypotheses on the nonlinearity f being...This paper is mainly concerned with existence and nonexistence results for solutions to the Kirchhoff type equation−(a+b∫_(R^(3))|∇u|^(2))Δu+V(x)u=f(u)in R^(3),with the general hypotheses on the nonlinearity f being as introduced by Berestycki and Lions.Our analysis introduces variational techniques to the analysis of the effect of the nonlinearity,especially for those cases when the concentration-compactness principle cannot be applied in terms of obtaining the compactness of the bounded Palais-Smale sequences and a minimizing problem related to the existence of a ground state on the Pohozaev manifold rather than the Nehari manifold associated with the equation.展开更多
In this paper, we study the longtime behavior of solution to the initial boundary value problem for a class of strongly damped Higher-order Kirchhoff type equations: . At first, we prove the existence and uniqueness o...In this paper, we study the longtime behavior of solution to the initial boundary value problem for a class of strongly damped Higher-order Kirchhoff type equations: . At first, we prove the existence and uniqueness of the solution by priori estimation and the Galerkin method. Then, we obtain to the existence of the global attractor. At last, we consider that the estimation of the upper bounds of Hausdorff and fractal dimensions for the global attractors are obtained.展开更多
This paper deals with the Hausdorff dimensions of the global attractor for a class of Kirchhoff-type coupled equations with strong damping and source terms. We obtain a precise estimate of upper bound of Hausdorff dim...This paper deals with the Hausdorff dimensions of the global attractor for a class of Kirchhoff-type coupled equations with strong damping and source terms. We obtain a precise estimate of upper bound of Hausdorff dimension of the global attractor.展开更多
In this paper, we study on the initial-boundary value problem for nonlinear wave equations of higher-order Kirchhoff type with Strong Dissipation: . At first, we prove the existence and uniqueness of the local solutio...In this paper, we study on the initial-boundary value problem for nonlinear wave equations of higher-order Kirchhoff type with Strong Dissipation: . At first, we prove the existence and uniqueness of the local solution by the Banach contraction mapping principle. Then, by “Concavity” method we establish three blow-up results for certain solutions in the case 1): , in the case 2): and in the case 3): . At last, we consider that the estimation of the upper bounds of the blow-up time is given for deferent initial energy.展开更多
This paper mainly deals with the higher-order coupled Kirchhoff-type equations with nonlinear strong damped and source terms in a bounded domain. We obtain some results that are estimation of the upper bounds of Hausd...This paper mainly deals with the higher-order coupled Kirchhoff-type equations with nonlinear strong damped and source terms in a bounded domain. We obtain some results that are estimation of the upper bounds of Hausdorff dimension and Fractal dimension of the global attractor.展开更多
In this paper, we investigate the finite dimensions of the global attractor for nonlinear higher-order coupled Kirchhoff type equations with strong linear damping in Hilbert spaces E0?and E1. Under the appropriate ass...In this paper, we investigate the finite dimensions of the global attractor for nonlinear higher-order coupled Kirchhoff type equations with strong linear damping in Hilbert spaces E0?and E1. Under the appropriate assumptions, we acquire a precise estimate of the upper bound for its Hausdorff and Fractal dimensions.展开更多
In this paper, we mainly deal with a class of higher-order coupled Kirch-hoff-type equations. At first, we take advantage of Hadamard’s graph to get the equivalent form of the original equations. Then, the inertial m...In this paper, we mainly deal with a class of higher-order coupled Kirch-hoff-type equations. At first, we take advantage of Hadamard’s graph to get the equivalent form of the original equations. Then, the inertial manifolds are proved by using spectral gap condition. The main result we gained is that the inertial manifolds are established under the proper assumptions of M(s) and gi(u,v), i=1, 2.展开更多
We investigate the global well-posedness and the global attractors of the solutions for the Higher-order Kirchhoff-type wave equation with nonlinear strongly damping: . For strong nonlinear damping σ and ?, we make a...We investigate the global well-posedness and the global attractors of the solutions for the Higher-order Kirchhoff-type wave equation with nonlinear strongly damping: . For strong nonlinear damping σ and ?, we make assumptions (H<sub>1</sub>) - (H<sub>4</sub>). Under of the proper assume, the main results are existence and uniqueness of the solution in proved by Galerkin method, and deal with the global attractors.展开更多
In this paper, we investigate the existence of random attractor for the random dynamical system generated by the Kirchhoff-type suspension bridge equations with strong damping and white noises. We first prove the exis...In this paper, we investigate the existence of random attractor for the random dynamical system generated by the Kirchhoff-type suspension bridge equations with strong damping and white noises. We first prove the existence and uniqueness of solutions to the initial boundary value conditions, and then we study the existence of the global attractors of the equation.展开更多
This paper deals with the initial boundary value problem for a class of nonlinear Kirchhoff-type equations with strong dissipative and source terms in a bounded domain, where and are constants. We obtain the global ex...This paper deals with the initial boundary value problem for a class of nonlinear Kirchhoff-type equations with strong dissipative and source terms in a bounded domain, where and are constants. We obtain the global existence of solutions by constructing a stable set in and show the energy exponential decay estimate by applying a lemma of V. Komornik.展开更多
基金supported by the NSFC(12271184)the Guangzhou Basic and Applied Basic Research Foundation(2024A04J10001).
文摘In the present paper,we prove the existence,non-existence and multiplicity of positive normalized solutions(λ_(c),u_(c))∈ℝ×H^(1)(ℝ^(N))to the general Kirchhoff problem-M\left(\int_{\mathbb{R}^N}\vert\nabla u\vert^2{\rm d}x\right)\Delta u+\lambda u=g(u)~\hbox{in}~\mathbb{R}^N,u\in H^1(\mathbb{R}^N),N\geq 1,satisfying the normalization constraint\int_{\mathbb{R}^N}u^2{\rm d}x=c,where M∈C([0,∞))is a given function satisfying some suitable assumptions.Our argument is not by the classical variational method,but by a global branch approach developed by Jeanjean et al.[J Math Pures Appl,2024,183:44–75]and a direct correspondence,so we can handle in a unified way the nonlinearities g(s),which are either mass subcritical,mass critical or mass supercritical.
基金supported by the Natural Science Foundation of China(11771166,12071169)the Hubei Key Laboratory of Mathematical Sciences and Program for Changjiang Scholars and Innovative Research Team in University#IRT17R46。
文摘In this paper,we study the existence and local uniqueness of multi-peak solutions to the Kirchhoff type equations-(ε^(2)a+εb∫_(R^(3))|■u|^(2))△u+V(x)u=u^(p),u>0 in R^(3),which concentrate at non-degenerate critical points of the potential function V(x),where a,b>0,1<p<5 are constants,andε>0 is a parameter.Applying the Lyapunov-Schmidt reduction method and a local Pohozaev type identity,we establish the existence and local uniqueness results of multi-peak solutions,which concentrate at{a_(i)}1≤i≤k,where{a_(i)}1≤i≤k are non-degenerate critical points of V(x)asε→0.
基金The first author and the third author were supported by the National Natural Science Foundation of China (11761030)the Cultivation Project for High-Level Scientific Research Achievements of Hubei Minzu University (PY20002)The second author was supported by the China Postdoctoral Science Foundation (2021M690773)。
文摘In the present paper, we consider the problem {-△u=u^(β_(1))|■u|^(β_(2)),in Ω,u=0,on ■Ω,u>0,in Ω,(0.1) where β_(1), β_(2) > 0 and β_(1) + β_(2) < 1, and Ω is a convex domain in R~n. The existence, uniqueness,regularity and (2-β_(2))/(1-β_(1)-β_(2))-concavity of the positive solutions of the problem(0.1) are proven.
文摘Solitons and bifurcations for the generalized Tzitzéica type equation are studied by using the theory of dynamical systems and Hamilton function. With the help of Maple and bifurcation theory of differential equations, the bifurcation parameter conditions and all the bifurcation phase portraits are obtained. Because the same energy value of the Hamiltonian function is corresponding to the same orbit, thus the periodic wave solutions, bright soliton and dark soliton solutions are defined.
文摘In this paper, we study the long time behavior of a class of generalized Beam-Kirchhoff equation , and prove the existence and uniqueness of the global solution of this class of equation by Galerkin method by making some assumptions about the nonlinear function term . The existence of the family of global attractor and its Hausdorff dimension and Fractal dimension estimation are proved.
文摘In this paper, we study the following Schrödinger-Kirchhoff equation where V(x) ≥ 0 and vanishes on an open set of R<sup>2</sup> and f has critical exponential growth. By using a version of Trudinger-Moser inequality and variational methods, we obtain the existence of ground state solutions for this problem.
文摘In this paper, we discuss the existence and uniqueness of global solutions, the existence of the family of global attractors and its dimension estimation for generalized Beam-Kirchhoff equation under initial conditions and boundary conditions, using the previous research results for reference. Firstly, the existence of bounded absorption set is proved by using a prior estimation, then the existence and uniqueness of the global solution of the problem is proved by using the classical Galerkin’s method. Finally, Housdorff dimension and fractal dimension of the family of global attractors are estimated by linear variational method and generalized Sobolev-Lieb-Thirring inequality.
基金supported by Natural Science Foundation of China(11271372)Hunan Provincial Natural Science Foundation of China(12JJ2004)
文摘In this paper, we concern with the following fourth order elliptic equations of Kirchhoff type {Δ^2u-(a+bfR^3|↓△u|^2dx)△u+V(x)u=f(x,u),x∈R^3, u∈H^2(R3),where a, b 〉 0 are constants and the primitive of the nonlinearity f is of superlinear growth near infinity in u and is also allowed to be sign-changing. By using variational methods, we establish the existence and multiplicity of solutions. Our conditions weaken the Ambrosetti- Rabinowitz type condition.
基金supported by Natural Science Foundation of China(11371159 and 11771166)Hubei Key Laboratory of Mathematical Sciences and Program for Changjiang Scholars and Innovative Research Team in University#IRT_17R46
文摘In this article, we study the multiplicity and concentration behavior of positive solutions for the p-Laplacian equation of SchrSdinger-Kirchhoff type -εpM(εp-N∫RN|△u|p)△pu+v(x|u|p-2u=f(u)in RN, where △p is the p-Laplacian operator, 1 〈 p 〈 N, M : R+ → R+ and V : RN →R+ are continuous functions, ε is a positive parameter, and f is a continuous function with subcritical growth. We assume that V satisfies the local condition introduced by M. del Pino and P. Felmer. By the variational methods, penalization techniques, and Lyusternik- Schnirelmann theory, we prove the existence, multiplicity, and concentration of solutions for the above equation.
文摘In this article, we consider the global existence and decay rates of solutions for the transmission problem of Kirchhoff type wave equations consisting of two physi- cally different types of materials, one component is a Kirchhoff type wave equation with nonlinear time dependent localized dissipation which is effective only on a neighborhood of certain part of the boundary, while the other is a Kirchhoff type wave equation with nonlinear memory.
文摘This paper is mainly concerned with existence and nonexistence results for solutions to the Kirchhoff type equation−(a+b∫_(R^(3))|∇u|^(2))Δu+V(x)u=f(u)in R^(3),with the general hypotheses on the nonlinearity f being as introduced by Berestycki and Lions.Our analysis introduces variational techniques to the analysis of the effect of the nonlinearity,especially for those cases when the concentration-compactness principle cannot be applied in terms of obtaining the compactness of the bounded Palais-Smale sequences and a minimizing problem related to the existence of a ground state on the Pohozaev manifold rather than the Nehari manifold associated with the equation.
文摘In this paper, we study the longtime behavior of solution to the initial boundary value problem for a class of strongly damped Higher-order Kirchhoff type equations: . At first, we prove the existence and uniqueness of the solution by priori estimation and the Galerkin method. Then, we obtain to the existence of the global attractor. At last, we consider that the estimation of the upper bounds of Hausdorff and fractal dimensions for the global attractors are obtained.
文摘This paper deals with the Hausdorff dimensions of the global attractor for a class of Kirchhoff-type coupled equations with strong damping and source terms. We obtain a precise estimate of upper bound of Hausdorff dimension of the global attractor.
文摘In this paper, we study on the initial-boundary value problem for nonlinear wave equations of higher-order Kirchhoff type with Strong Dissipation: . At first, we prove the existence and uniqueness of the local solution by the Banach contraction mapping principle. Then, by “Concavity” method we establish three blow-up results for certain solutions in the case 1): , in the case 2): and in the case 3): . At last, we consider that the estimation of the upper bounds of the blow-up time is given for deferent initial energy.
文摘This paper mainly deals with the higher-order coupled Kirchhoff-type equations with nonlinear strong damped and source terms in a bounded domain. We obtain some results that are estimation of the upper bounds of Hausdorff dimension and Fractal dimension of the global attractor.
文摘In this paper, we investigate the finite dimensions of the global attractor for nonlinear higher-order coupled Kirchhoff type equations with strong linear damping in Hilbert spaces E0?and E1. Under the appropriate assumptions, we acquire a precise estimate of the upper bound for its Hausdorff and Fractal dimensions.
文摘In this paper, we mainly deal with a class of higher-order coupled Kirch-hoff-type equations. At first, we take advantage of Hadamard’s graph to get the equivalent form of the original equations. Then, the inertial manifolds are proved by using spectral gap condition. The main result we gained is that the inertial manifolds are established under the proper assumptions of M(s) and gi(u,v), i=1, 2.
文摘We investigate the global well-posedness and the global attractors of the solutions for the Higher-order Kirchhoff-type wave equation with nonlinear strongly damping: . For strong nonlinear damping σ and ?, we make assumptions (H<sub>1</sub>) - (H<sub>4</sub>). Under of the proper assume, the main results are existence and uniqueness of the solution in proved by Galerkin method, and deal with the global attractors.
文摘In this paper, we investigate the existence of random attractor for the random dynamical system generated by the Kirchhoff-type suspension bridge equations with strong damping and white noises. We first prove the existence and uniqueness of solutions to the initial boundary value conditions, and then we study the existence of the global attractors of the equation.
文摘This paper deals with the initial boundary value problem for a class of nonlinear Kirchhoff-type equations with strong dissipative and source terms in a bounded domain, where and are constants. We obtain the global existence of solutions by constructing a stable set in and show the energy exponential decay estimate by applying a lemma of V. Komornik.