运用变分方法讨论一类Schrödinger-Kirchhoff-Poisson方程正解的存在性。在适当假设下,通过运用一些技巧证明了能量泛函满足Palais-Smale条件。最后运用山路引理,Ekeland变分原理和强极大值原理得到了主要结论。The existence of p...运用变分方法讨论一类Schrödinger-Kirchhoff-Poisson方程正解的存在性。在适当假设下,通过运用一些技巧证明了能量泛函满足Palais-Smale条件。最后运用山路引理,Ekeland变分原理和强极大值原理得到了主要结论。The existence of positive solutions for a class of Schrödinger-Kirchhoff-Poisson equation is discussed by using variational methods. Under appropriate assumption, it is proved that the energy functional satisfies the Palais-Smale condition by using some techniques. Finally, the main conclusions are obtained by using mountain pass lemma, Ekeland variational principle and strong maximum principle.展开更多
文摘运用变分方法讨论一类Schrödinger-Kirchhoff-Poisson方程正解的存在性。在适当假设下,通过运用一些技巧证明了能量泛函满足Palais-Smale条件。最后运用山路引理,Ekeland变分原理和强极大值原理得到了主要结论。The existence of positive solutions for a class of Schrödinger-Kirchhoff-Poisson equation is discussed by using variational methods. Under appropriate assumption, it is proved that the energy functional satisfies the Palais-Smale condition by using some techniques. Finally, the main conclusions are obtained by using mountain pass lemma, Ekeland variational principle and strong maximum principle.