期刊文献+
共找到647篇文章
< 1 2 33 >
每页显示 20 50 100
Infinitely Many Solutions and a Ground-State Solution for Klein-Gordon Equation Coupled with Born-Infeld Theory
1
作者 Fangfang Huang Qiongfen Zhang 《Journal of Applied Mathematics and Physics》 2024年第4期1441-1458,共18页
In this paper, we intend to consider a kind of nonlinear Klein-Gordon equation coupled with Born-Infeld theory. By using critical point theory and the method of Nehari manifold, we obtain two existing results of infin... In this paper, we intend to consider a kind of nonlinear Klein-Gordon equation coupled with Born-Infeld theory. By using critical point theory and the method of Nehari manifold, we obtain two existing results of infinitely many high-energy radial solutions and a ground-state solution for this kind of system, which improve and generalize some related results in the literature. 展开更多
关键词 klein-gordon equation Born-Infeld Theory Infinitely Many Solutions Ground-State Solution Critical Point Theory
下载PDF
Adomian Decomposition Method for Solving Fractional Time-Klein-Gordon Equations Using Maple
2
作者 Dalal Albogami Dalal Maturi Hashim Alshehri 《Applied Mathematics》 2023年第6期411-418,共8页
Adomian decomposition is a semi-analytical approach to solving ordinary and partial differential equations. This study aims to apply the Adomian Decomposition Technique to obtain analytic solutions for linear and nonl... Adomian decomposition is a semi-analytical approach to solving ordinary and partial differential equations. This study aims to apply the Adomian Decomposition Technique to obtain analytic solutions for linear and nonlinear time-fractional Klein-Gordon equations. The fractional derivatives are computed according to Caputo. Examples are provided. The findings show the explicitness, efficacy, and correctness of the used approach. Approximate solutions acquired by the decomposition method have been numerically assessed, given in the form of graphs and tables, and then these answers are compared with the actual solutions. The Adomian decomposition approach, which was used in this study, is a widely used and convergent method for the solutions of linear and non-linear time fractional Klein-Gordon equation. 展开更多
关键词 Adomian Decomposition klein-gordon Fractional Calculus
下载PDF
R^(3)上具有一般凹凸非线性项的Klein-Gordon-Born-Infeld方程无穷多解的存在性
3
作者 陈尚杰 《数学物理学报(A辑)》 CSCD 北大核心 2024年第3期637-649,共13页
该文运用临界点理论中的Z_(2)-山路定理得到了R^(3)上具有凹凸非线性项的Klein-Gordon方程和Born-Infeld理论耦合系统无穷多解的存在性.
关键词 klein-gordon方程 Born-Infeld理论 变分方法 Z_(2)-山路定理
下载PDF
带有非局部Laplace算子的饱和Schrödinger-Klein-Gordon方程的概自守动力学
4
作者 张天伟 李永昆 《数学物理学报(A辑)》 CSCD 北大核心 2024年第2期326-353,共28页
迄今为止,几乎没有学者研究Schrödinger或Klein-Gordon方程的概自守动力学.该文结合Galerkin方法、Laplace变换、Fourier级数和Picard迭代研究了带有非局部Laplace算子饱和Schrödinger-Klein-Gordon方程的概自守弱解的一些结... 迄今为止,几乎没有学者研究Schrödinger或Klein-Gordon方程的概自守动力学.该文结合Galerkin方法、Laplace变换、Fourier级数和Picard迭代研究了带有非局部Laplace算子饱和Schrödinger-Klein-Gordon方程的概自守弱解的一些结果.此外,还考虑了该方程的全局指数收敛性. 展开更多
关键词 Schrödinger klein-gordon GALERKIN方法 FOURIER级数 Picard迭代
下载PDF
次线性Klein-Gordon-Maxwell系统解的多重性
5
作者 孙歆 段誉 《数学物理学报(A辑)》 CSCD 北大核心 2024年第5期1205-1215,共11页
该文研究如下Klein-Gordon-Maxwell系统{-Δu+u-(2ω+φ)φu=λQ(x)f(u),x∈R^(3)△φ=(ω+φ)u^(2),x∈R^(3)其中ω>0是一个常数,λ>0是一个参数,Q是一个正的函数.当非线性项f在无穷远处是次线性增长时,利用变分方法及三临界点... 该文研究如下Klein-Gordon-Maxwell系统{-Δu+u-(2ω+φ)φu=λQ(x)f(u),x∈R^(3)△φ=(ω+φ)u^(2),x∈R^(3)其中ω>0是一个常数,λ>0是一个参数,Q是一个正的函数.当非线性项f在无穷远处是次线性增长时,利用变分方法及三临界点定理获得此系统至少存在两个非平凡解.另外,当f仅在原点附近满足次线性增长时,利用变分方法及临界点定理获得此系统解的存在性及多重性.完善了此系统解的多重性的已有结果. 展开更多
关键词 klein-gordon-Maxwell系统 变分法 次线性 临界点定理 多重性
下载PDF
Klein-Gordon方程混合问题的Chebyshev谱配置方法
6
作者 万广霞 刘治军 《南阳师范学院学报》 CAS 2024年第5期36-41,共6页
针对有界域上的非线性Klein-Gordon方程,构造了时空全离散的Chebyshev谱配置格式,也就是在空间和时间方向上均以Chebyshev-Gauss-Lobatto节点作为配置点,将其转化为非线性方程组,利用不动点迭代方法来进行求解。数值实验结果表明了该方... 针对有界域上的非线性Klein-Gordon方程,构造了时空全离散的Chebyshev谱配置格式,也就是在空间和时间方向上均以Chebyshev-Gauss-Lobatto节点作为配置点,将其转化为非线性方程组,利用不动点迭代方法来进行求解。数值实验结果表明了该方法的有效性和谱精度。 展开更多
关键词 klein-gordon方程 混合问题 Chebyshev时空谱配置方法
下载PDF
Klein-Gordon-Schrodinger方程的几种差分格式及比较
7
作者 林周瑾 汪佳玲 霍昱安 《华侨大学学报(自然科学版)》 CAS 2024年第1期108-120,共13页
探究在特定的初值和边界条件下一维Klein-Gordon-Schrodinger方程的几种差分格式并进行比较。利用经典的向前差分算子、中心差分算子、Crank-Nicolson方法和紧差分算子分别为Klein-Gordon-Schrodinger方程构造向前Euler式、Crank-Nicol... 探究在特定的初值和边界条件下一维Klein-Gordon-Schrodinger方程的几种差分格式并进行比较。利用经典的向前差分算子、中心差分算子、Crank-Nicolson方法和紧差分算子分别为Klein-Gordon-Schrodinger方程构造向前Euler式、Crank-Nicolson格式及紧差分格式。结果表明:Crank-Nicolson格式及紧差分格式能够精确地保持离散电荷和能量守恒。数值实验验证了理论结果的正确性。 展开更多
关键词 klein-gordon-Schrodinger方程 向前Euler格式 CRANK-NICOLSON格式 紧差分格式 电荷守恒 能量守恒
下载PDF
基于椭圆函数展开法求Klein-Gordon方程的解
8
作者 赵丽娟 《佳木斯大学学报(自然科学版)》 CAS 2024年第8期177-180,共4页
非线性Klein-Gordon方程在量子场论、高能物理等领域的应用广泛,由于方程的非线性,寻找精确解已知时理论物理研究时面临的重要挑战。基于此提出一种以雅可比(Jacobi)椭圆函数展开法为基础的求解方法。通过引入雅可比椭圆函数,将非线性Kl... 非线性Klein-Gordon方程在量子场论、高能物理等领域的应用广泛,由于方程的非线性,寻找精确解已知时理论物理研究时面临的重要挑战。基于此提出一种以雅可比(Jacobi)椭圆函数展开法为基础的求解方法。通过引入雅可比椭圆函数,将非线性Klein-Gordon方程转化为可解的非线性代数方程组;同时结合雅可比椭圆函数的模数情况进行分析,分别对模数趋近极限也即模数趋近于1或者0时的情况分析非线性Klein-Gordon方程的解,最后分析当模数在正常情况下,非线性Klein-Gordon方程解的情况。旨在通过该方式更好地求解Klein-Gordon方程,为研究提供扎实基础。 展开更多
关键词 椭圆函数 klein-gordon方程 非线性方程 椭圆函数展开法 模数
下载PDF
一类变号位势的Klein-Gordon-Maxwell系统解的存在性和多重性
9
作者 孙歆 《贵州工程应用技术学院学报》 2024年第3期1-8,共8页
研究一类含有参数的Klein-Gordon-Maxwell系统解的存在性和多重性。当非线性项满足一般超线性条件且位势是允许变号时,利用变分法和分析技巧获得了系统解的存在性和多重性结果,完善了此系统解的存在性的已有结果。
关键词 klein-gordon-Maxwell系统 变分法 山路定理
下载PDF
The Natural Transform Decomposition Method for Solving Fractional Klein-Gordon Equation
10
作者 Mohamed Elbadri 《Applied Mathematics》 2023年第3期230-243,共14页
In this paper, a coupling of the natural transform method and the Admoian decomposition method called the natural transform decomposition method (NTDM), is utilized to solve the linear and nonlinear time-fractional Kl... In this paper, a coupling of the natural transform method and the Admoian decomposition method called the natural transform decomposition method (NTDM), is utilized to solve the linear and nonlinear time-fractional Klein-Gordan equation. The (NTDM), is introduced to derive the approximate solutions in series form for this equation. Solutions have been drawn for several values of the time power. To identify the strength of the method, three examples are presented. 展开更多
关键词 Natural Transform Adomian Decomposition Method Fractional klein-gordon equation
下载PDF
Multisymplectic implicit and explicit methods for Klein-Gordon-Schrdinger equations 被引量:1
11
作者 蔡加祥 杨斌 梁华 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第3期99-105,共7页
We propose multisymplectic implicit and explicit Fourier pseudospectral methods for the Klein-Gordon-Schrodinger equations.We prove that the implicit method satisfies the charge conservation law exactly.Both methods p... We propose multisymplectic implicit and explicit Fourier pseudospectral methods for the Klein-Gordon-Schrodinger equations.We prove that the implicit method satisfies the charge conservation law exactly.Both methods provide accurate solutions in long-time computations and simulate the soliton collision well.The numerical results show the abilities of the two methods in preserving the charge,energy,and momentum conservation laws. 展开更多
关键词 klein-gordon-Schrodinger equations multisymplectic method Fourier pseudospectral method conservation law
下载PDF
A NOTE ON NONAUTONOMOUS KLEIN-GORDON-SCHRDINGER EQUATIONS WITH HOMOGENEOUS DIRICHLET BOUNDARY CONDITION 被引量:1
12
作者 赵才地 周盛凡 李用声 《Acta Mathematica Scientia》 SCIE CSCD 2008年第4期823-833,共11页
This note discusses the long time behavior of solutions for nonautonomous weakly dissipative Klein-Gordon-Schrodinger equations with homogeneous Dirichlet boundary condition.The authors prove the existence of compact ... This note discusses the long time behavior of solutions for nonautonomous weakly dissipative Klein-Gordon-Schrodinger equations with homogeneous Dirichlet boundary condition.The authors prove the existence of compact kernel sections for the associated process by using a suitable decomposition of the equations. 展开更多
关键词 Nonautonomous klein-gordon-SchrSdinger equations kernel sections weakly dissipation uniformly asymptotic compactness
下载PDF
Extended F-Expansion Method and Periodic Wave Solutions for Klein-Gordon-SchrSdinger Equations 被引量:2
13
作者 LI Xiao-Yan LI Xiang-Zheng WANG Ming-Liang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第1期9-14,共6页
We present an extended F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics. By using extended F-expansion method, many periodic wave solutions expressed by v... We present an extended F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics. By using extended F-expansion method, many periodic wave solutions expressed by various Jacobi elliptic functions for the Klein-Gordon-Schrodinger equations are obtained. In the limit cases, the solitary wave solutions and trigonometric function solutions for the equations are also obtained. 展开更多
关键词 klein-gordon-Schrodinger equations F-expansion method periodic wave solutions Jacobi elliptic functions solitary wave solutions
下载PDF
A Notable Quasi-Relativistic Wave Equation and Its Relation to the Schrödinger, Klein-Gordon, and Dirac Equations 被引量:1
14
作者 Luis Grave de Peralta Hira Farooq 《Journal of Modern Physics》 2021年第8期1145-1159,共15页
An intriguing quasi-relativistic wave equation, which is useful between the range of applications of the Schr<span style="white-space:nowrap;">&ouml;</span>dinger and the Klein-Gordon equatio... An intriguing quasi-relativistic wave equation, which is useful between the range of applications of the Schr<span style="white-space:nowrap;">&ouml;</span>dinger and the Klein-Gordon equations, is discussed. This equation allows for a quantum description of a constant number of spin-0 particles moving at quasi-relativistic energies. It is shown how to obtain a Pauli-like version of this equation from the Dirac equation. This Pauli-like quasi-relativistic wave equation allows for a quantum description of a constant number of spin-1/2 particles moving at quasi-relativistic energies and interacting with an external electromagnetic field. In addition, it was found an excellent agreement between the energies of the electron in heavy Hydrogen-like atoms obtained using the Dirac equation, and the energies calculated using a perturbation approach based on the quasi-relativistic wave equation. Finally, it is argued that the notable quasi-relativistic wave equation discussed in this work provides interesting pedagogical opportunities for a fresh approach to the introduction to relativistic effects in introductory quantum mechanics courses. 展开更多
关键词 Quantum Mechanics Schrödinger equation klein-gordon equation Dirac equation Relativistic Quantum Mechanics
下载PDF
ASYMPTOTIC THEORY OF INITIAL VALUE PROBLEMS FOR NONLINEAR PERTURBED KLEIN-GORDON EQUATIONS
15
作者 甘在会 张健 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第7期907-913,共7页
The asymptotic theory of initial value problems for a class of nonlinear perturbed Klein-Gordon equations in two space dimensions is considered. Firstly, using the contraction mapping principle, combining some priori ... The asymptotic theory of initial value problems for a class of nonlinear perturbed Klein-Gordon equations in two space dimensions is considered. Firstly, using the contraction mapping principle, combining some priori estimates and the convergence of Bessel function, the well-posedness of solutions of the initial value problem in twice continuous differentiable space was obtained according to the equivalent integral equation of initial value problem for the Klein-Gordon equations. Next, formal approximations of initial value problem was constructed by perturbation method and the asymptotic validity of the formal approximation is got. Finally, an application of the asymptotic theory was given, the asymptotic approximation degree of solutions for the initial value problem of a specific nonlinear Klein-Gordon equation was analyzed by using the asymptotic approximation theorem. 展开更多
关键词 klein-gordon equations WELL-POSEDNESS asymptotic theory formal approximations application
下载PDF
Numerical Solution of Klein/Sine-Gordon Equations by Spectral Method Coupled with Chebyshev Wavelets
16
作者 Javid Iqbal Rustam Abass 《Applied Mathematics》 2016年第17期2097-2109,共13页
The basic aim of this paper is to introduce and describe an efficient numerical scheme based on spectral approach coupled with Chebyshev wavelets for the approximate solutions of Klein-Gordon and Sine-Gordon equations... The basic aim of this paper is to introduce and describe an efficient numerical scheme based on spectral approach coupled with Chebyshev wavelets for the approximate solutions of Klein-Gordon and Sine-Gordon equations. The main characteristic is that, it converts the given problem into a system of algebraic equations that can be solved easily with any of the usual methods. To show the accuracy and the efficiency of the method, several benchmark problems are implemented and the comparisons are given with other methods existing in the recent literature. The results of numerical tests confirm that the proposed method is superior to other existing ones and is highly accurate 展开更多
关键词 Chebyshev Wavelets Spectral Method Operational Matrix of Derivative klein and Sine-gordon equations Numerical Simulation MATLAB
下载PDF
A local energy-preserving scheme for Klein Gordon Schrdinger equations
17
作者 蔡加祥 汪佳玲 王雨顺 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第5期171-176,共6页
A local energy conservation law is proposed for the Klein--Gordon-Schrrdinger equations, which is held in any local time-space region. The local property is independent of the boundary condition and more essential tha... A local energy conservation law is proposed for the Klein--Gordon-Schrrdinger equations, which is held in any local time-space region. The local property is independent of the boundary condition and more essential than the global energy conservation law. To develop a numerical method preserving the intrinsic properties as much as possible, we propose a local energy-preserving (LEP) scheme for the equations. The merit of the proposed scheme is that the local energy conservation law can hold exactly in any time-space region. With the periodic boundary conditions, the scheme also possesses the discrete change and global energy conservation laws. A nonlinear analysis shows that the LEP scheme converges to the exact solutions with order O(τ2 + h2). The theoretical properties are verified by numerical experiments. 展开更多
关键词 klein-gordon-Schrodinger equations energy conservation law local structure convergence analysis
下载PDF
Orbital Stability of Solitary Waves for Generalized Klein-Gordon-Schrodinger Equations
18
作者 Wenhui Qi Guoguang Lin 《Applied Mathematics》 2011年第8期1005-1010,共6页
This paper concerns the orbital stability for exact solitary waves of the Generalized Klein-Gordon-Schrod-inger equations. Since the abstract results of Grillakis et al[1-2] can not be applied directly, we can extend ... This paper concerns the orbital stability for exact solitary waves of the Generalized Klein-Gordon-Schrod-inger equations. Since the abstract results of Grillakis et al[1-2] can not be applied directly, we can extend the abstract stability theory and use the detailed spectral analysis to obtain the stability of the solitary waves. 展开更多
关键词 SOLITARY WAVES Stability klein-gordon-Schrodinger equations
下载PDF
New Explicit and Exact Solutions for the Klein-Gordon-Zakharov Equations
19
作者 HONG BAO-JIAN AND SUN FU-SHU 《Communications in Mathematical Research》 CSCD 2010年第2期97-104,共8页
In this paper, based on the generalized Jacobi elliptic function expansion method, we obtain abundant new explicit and exact solutions of the Klein-Gordon- Zakharov equations, which degenerate to solitary wave solutio... In this paper, based on the generalized Jacobi elliptic function expansion method, we obtain abundant new explicit and exact solutions of the Klein-Gordon- Zakharov equations, which degenerate to solitary wave solutions and triangle function solutions in the limit cases, showing that this new method is more powerful to seek exact solutions of nonlinear partial differential equations in mathematical physics. 展开更多
关键词 generalized Jacobi elliptic functions expansion method doubly periodic solution exact solution klein-gordon-Zakharov equation
下载PDF
Solution of Partial Derivative Equations of Poisson and Klein-Gordon with Neumann Conditions as a Generalized Problem of Two-Dimensional Moments
20
作者 Maria B. Pintarelli 《Journal of Applied Mathematics and Physics》 2020年第8期1606-1614,共9页
It will be shown that finding solutions from the Poisson and Klein-Gordon equations under Neumann conditions are equivalent to solving an integral equation, which can be treated as a generalized two-dimensional moment... It will be shown that finding solutions from the Poisson and Klein-Gordon equations under Neumann conditions are equivalent to solving an integral equation, which can be treated as a generalized two-dimensional moment problem over a domain that is considered rectangular. The method consists to solve the integral equation numerically using the two-dimensional inverse moments problem techniques. We illustrate the different cases with examples. 展开更多
关键词 equation in Poisson Partial Derivatives klein-gordon equation Integral equations Generalized Moment Problem
下载PDF
上一页 1 2 33 下一页 到第
使用帮助 返回顶部