The light propagation through system a polarizer-analyzer is investigated on the basis of quantum conceptions about the nature of light. It is shown, that Malus law based on principles of classical electrodynamics not...The light propagation through system a polarizer-analyzer is investigated on the basis of quantum conceptions about the nature of light. It is shown, that Malus law based on principles of classical electrodynamics not completely takes into account all effects which can occur at the light propagation through system a polarizer-analyzer. The phenomenon of possible change of frequency of light in particular drops out, for example in the region of X-ray radiation. The deduction of Malus law based on quantum principles is given. For comparison the differential effective section of interaction of a photon and electron with take into account of rotation of a plane of polarization of a photon in Compton’s effect is found.展开更多
The following article has been retracted due to the investigation of complaints received against it. Mr. Mohammadali Ghorbani (corresponding author and also the last author) cheated the author’s name: Alireza Heidari...The following article has been retracted due to the investigation of complaints received against it. Mr. Mohammadali Ghorbani (corresponding author and also the last author) cheated the author’s name: Alireza Heidari. The scientific community takes a very strong view on this matter and we treat all unethical behavior such as plagiarism seriously. This paper published in Vol.3 No.3, 260-265, 2012, has been removed from this site.展开更多
Objective To evaluate the low melting-point MCP-69,MCP-96,MCP-137,and MCP-200 alloys,and characterize them for their potential to protect from the harms associated with radiation and eliminate radiation hazards during...Objective To evaluate the low melting-point MCP-69,MCP-96,MCP-137,and MCP-200 alloys,and characterize them for their potential to protect from the harms associated with radiation and eliminate radiation hazards during radiological procedures and treatment of cancer.Methods The Klein-Nishina formula was used to calculate the electronic and atomic cross-sections of these alloys using photon beams with energies 4,6,9,12,and 18MeV.Energy transfer coefficients,Compton mass attenuation coefficient,mass-energy transfer coefficient,and recoil energy of electrons in the specific photon energies of 4–18MeV were calculated.The alloys'effective charge number and the photon energy were key factors in determining the properties found by utilizing the Klein-Nishina formula and Compton effects.Results The cross sections and energy transfer coefficients increased with the increasing effective charge number Z of the alloys and decreased as the photon energy increased.The Compton recoil of the ejected electrons was observed to have a direct relationship with photon energy,but mass-energy transfer decreased with increasing photon energy.These alloys can replace the toxic lead for environmentally cleaned radiation applications.Conclusions These calculations and characteristics of the MCP alloys can help further determine their viability as materials for radiation shielding,their use in safe cancer diagnosis,treatment,and environmental hazards protection.展开更多
文摘The light propagation through system a polarizer-analyzer is investigated on the basis of quantum conceptions about the nature of light. It is shown, that Malus law based on principles of classical electrodynamics not completely takes into account all effects which can occur at the light propagation through system a polarizer-analyzer. The phenomenon of possible change of frequency of light in particular drops out, for example in the region of X-ray radiation. The deduction of Malus law based on quantum principles is given. For comparison the differential effective section of interaction of a photon and electron with take into account of rotation of a plane of polarization of a photon in Compton’s effect is found.
文摘The following article has been retracted due to the investigation of complaints received against it. Mr. Mohammadali Ghorbani (corresponding author and also the last author) cheated the author’s name: Alireza Heidari. The scientific community takes a very strong view on this matter and we treat all unethical behavior such as plagiarism seriously. This paper published in Vol.3 No.3, 260-265, 2012, has been removed from this site.
文摘Objective To evaluate the low melting-point MCP-69,MCP-96,MCP-137,and MCP-200 alloys,and characterize them for their potential to protect from the harms associated with radiation and eliminate radiation hazards during radiological procedures and treatment of cancer.Methods The Klein-Nishina formula was used to calculate the electronic and atomic cross-sections of these alloys using photon beams with energies 4,6,9,12,and 18MeV.Energy transfer coefficients,Compton mass attenuation coefficient,mass-energy transfer coefficient,and recoil energy of electrons in the specific photon energies of 4–18MeV were calculated.The alloys'effective charge number and the photon energy were key factors in determining the properties found by utilizing the Klein-Nishina formula and Compton effects.Results The cross sections and energy transfer coefficients increased with the increasing effective charge number Z of the alloys and decreased as the photon energy increased.The Compton recoil of the ejected electrons was observed to have a direct relationship with photon energy,but mass-energy transfer decreased with increasing photon energy.These alloys can replace the toxic lead for environmentally cleaned radiation applications.Conclusions These calculations and characteristics of the MCP alloys can help further determine their viability as materials for radiation shielding,their use in safe cancer diagnosis,treatment,and environmental hazards protection.