The fast proliferation of edge devices for the Internet of Things(IoT)has led to massive volumes of data explosion.The generated data is collected and shared using edge-based IoT structures at a considerably high freq...The fast proliferation of edge devices for the Internet of Things(IoT)has led to massive volumes of data explosion.The generated data is collected and shared using edge-based IoT structures at a considerably high frequency.Thus,the data-sharing privacy exposure issue is increasingly intimidating when IoT devices make malicious requests for filching sensitive information from a cloud storage system through edge nodes.To address the identified issue,we present evolutionary privacy preservation learning strategies for an edge computing-based IoT data sharing scheme.In particular,we introduce evolutionary game theory and construct a payoff matrix to symbolize intercommunication between IoT devices and edge nodes,where IoT devices and edge nodes are two parties of the game.IoT devices may make malicious requests to achieve their goals of stealing privacy.Accordingly,edge nodes should deny malicious IoT device requests to prevent IoT data from being disclosed.They dynamically adjust their own strategies according to the opponent's strategy and finally maximize the payoffs.Built upon a developed application framework to illustrate the concrete data sharing architecture,a novel algorithm is proposed that can derive the optimal evolutionary learning strategy.Furthermore,we numerically simulate evolutionarily stable strategies,and the final results experimentally verify the correctness of the IoT data sharing privacy preservation scheme.Therefore,the proposed model can effectively defeat malicious invasion and protect sensitive information from leaking when IoT data is shared.展开更多
To guarantee the heterogeneous delay requirements of the diverse vehicular services,it is necessary to design a full cooperative policy for both Vehicle to Infrastructure(V2I)and Vehicle to Vehicle(V2V)links.This pape...To guarantee the heterogeneous delay requirements of the diverse vehicular services,it is necessary to design a full cooperative policy for both Vehicle to Infrastructure(V2I)and Vehicle to Vehicle(V2V)links.This paper investigates the reduction of the delay in edge information sharing for V2V links while satisfying the delay requirements of the V2I links.Specifically,a mean delay minimization problem and a maximum individual delay minimization problem are formulated to improve the global network performance and ensure the fairness of a single user,respectively.A multi-agent reinforcement learning framework is designed to solve these two problems,where a new reward function is proposed to evaluate the utilities of the two optimization objectives in a unified framework.Thereafter,a proximal policy optimization approach is proposed to enable each V2V user to learn its policy using the shared global network reward.The effectiveness of the proposed approach is finally validated by comparing the obtained results with those of the other baseline approaches through extensive simulation experiments.展开更多
In this paper, we made a detail analysis for the ESAMPH algorithm, and proposed ESAMPH_D algorithm according to the insufficient of ESAMPH algorithm. The ESAMPH_D algorithm does not consider those paths that do not sa...In this paper, we made a detail analysis for the ESAMPH algorithm, and proposed ESAMPH_D algorithm according to the insufficient of ESAMPH algorithm. The ESAMPH_D algorithm does not consider those paths that do not satisfy the delay constraint, so we can ensure that all paths be taken into account will meet the limit of delay constraint, then we find the least costly path in order to build a minimum cost multicast tree. Simulation results show that the algorithm is better than ESAMPH algorithm in performance.展开更多
With the rapid growth of Internet of Things(IoT)based models,and the lack amount of data makes cloud computing resources insufficient.Hence,edge computing-based techniques are becoming more popular in present research...With the rapid growth of Internet of Things(IoT)based models,and the lack amount of data makes cloud computing resources insufficient.Hence,edge computing-based techniques are becoming more popular in present research domains that makes data storage,and processing effective at the network edges.There are several advanced features like parallel processing and data perception are available in edge computing.Still,there are some challenges in providing privacy and data security over networks.To solve the security issues in Edge Computing,Hash-based Message Authentication Code(HMAC)algorithm is used to provide solutions for preserving data from various attacks that happens with the distributed network nature.This paper proposed a Trust Model for Secure Data Sharing(TM-SDS)with HMAC algorithm.Here,data security is ensured with local and global trust levels with the centralized processing of cloud and by conserving resources effectively.Further,the proposed model achieved 84.25%of packet delivery ratio which is better compared to existing models in the resulting phase.The data packets are securely transmitted between entities in the proposed model and results showed that proposed TM-SDS model outperforms the existing models in an efficient manner.展开更多
针对自动共享电动汽车(shared autonomous electric vehicles,SAEV)运行出现的车辆分配不平衡以及充电优化问题,提出了一种基于云-边协调计算的SAEV优化控制策略。首先,给出SAEV再平衡优化模型以及再平衡任务分配算法;其次,考虑使用V2G...针对自动共享电动汽车(shared autonomous electric vehicles,SAEV)运行出现的车辆分配不平衡以及充电优化问题,提出了一种基于云-边协调计算的SAEV优化控制策略。首先,给出SAEV再平衡优化模型以及再平衡任务分配算法;其次,考虑使用V2G和动态电价进行SAEV车队的充放电优化,给出SAEV车队能量交换模型以及出行订单分配算法,以减少整个SAEV车队系统的充电成本;再次,利用云-边协调通信将这些优化结果信息在不同平台间进行互动传输,实现电动汽车的最优充电与迁移策略;最后,通过MATLAB使用真实的深圳出租车数据对该优化控制方法进行验证。结果表明,该框架可降低充电成本,提高交通效率,有望扩展应用到更大规模的系统中。所提云-边协调控制策略将复杂的SAEV优化问题分解成3个子问题进行求解,为SAEV的最优运行提供了一种新的方法。展开更多
基金supported in part by Zhejiang Provincial Natural Science Foundation of China under Grant nos.LZ22F020002 and LY22F020003National Natural Science Foundation of China under Grant nos.61772018 and 62002226the key project of Humanities and Social Sciences in Colleges and Universities of Zhejiang Province under Grant no.2021GH017.
文摘The fast proliferation of edge devices for the Internet of Things(IoT)has led to massive volumes of data explosion.The generated data is collected and shared using edge-based IoT structures at a considerably high frequency.Thus,the data-sharing privacy exposure issue is increasingly intimidating when IoT devices make malicious requests for filching sensitive information from a cloud storage system through edge nodes.To address the identified issue,we present evolutionary privacy preservation learning strategies for an edge computing-based IoT data sharing scheme.In particular,we introduce evolutionary game theory and construct a payoff matrix to symbolize intercommunication between IoT devices and edge nodes,where IoT devices and edge nodes are two parties of the game.IoT devices may make malicious requests to achieve their goals of stealing privacy.Accordingly,edge nodes should deny malicious IoT device requests to prevent IoT data from being disclosed.They dynamically adjust their own strategies according to the opponent's strategy and finally maximize the payoffs.Built upon a developed application framework to illustrate the concrete data sharing architecture,a novel algorithm is proposed that can derive the optimal evolutionary learning strategy.Furthermore,we numerically simulate evolutionarily stable strategies,and the final results experimentally verify the correctness of the IoT data sharing privacy preservation scheme.Therefore,the proposed model can effectively defeat malicious invasion and protect sensitive information from leaking when IoT data is shared.
基金supported in part by the National Natural Science Foundation of China under grants 61901078,61771082,61871062,and U20A20157in part by the Science and Technology Research Program of Chongqing Municipal Education Commission under grant KJQN201900609+2 种基金in part by the Natural Science Foundation of Chongqing under grant cstc2020jcyj-zdxmX0024in part by University Innovation Research Group of Chongqing under grant CXQT20017in part by the China University Industry-University-Research Collaborative Innovation Fund(Future Network Innovation Research and Application Project)under grant 2021FNA04008.
文摘To guarantee the heterogeneous delay requirements of the diverse vehicular services,it is necessary to design a full cooperative policy for both Vehicle to Infrastructure(V2I)and Vehicle to Vehicle(V2V)links.This paper investigates the reduction of the delay in edge information sharing for V2V links while satisfying the delay requirements of the V2I links.Specifically,a mean delay minimization problem and a maximum individual delay minimization problem are formulated to improve the global network performance and ensure the fairness of a single user,respectively.A multi-agent reinforcement learning framework is designed to solve these two problems,where a new reward function is proposed to evaluate the utilities of the two optimization objectives in a unified framework.Thereafter,a proximal policy optimization approach is proposed to enable each V2V user to learn its policy using the shared global network reward.The effectiveness of the proposed approach is finally validated by comparing the obtained results with those of the other baseline approaches through extensive simulation experiments.
文摘In this paper, we made a detail analysis for the ESAMPH algorithm, and proposed ESAMPH_D algorithm according to the insufficient of ESAMPH algorithm. The ESAMPH_D algorithm does not consider those paths that do not satisfy the delay constraint, so we can ensure that all paths be taken into account will meet the limit of delay constraint, then we find the least costly path in order to build a minimum cost multicast tree. Simulation results show that the algorithm is better than ESAMPH algorithm in performance.
文摘With the rapid growth of Internet of Things(IoT)based models,and the lack amount of data makes cloud computing resources insufficient.Hence,edge computing-based techniques are becoming more popular in present research domains that makes data storage,and processing effective at the network edges.There are several advanced features like parallel processing and data perception are available in edge computing.Still,there are some challenges in providing privacy and data security over networks.To solve the security issues in Edge Computing,Hash-based Message Authentication Code(HMAC)algorithm is used to provide solutions for preserving data from various attacks that happens with the distributed network nature.This paper proposed a Trust Model for Secure Data Sharing(TM-SDS)with HMAC algorithm.Here,data security is ensured with local and global trust levels with the centralized processing of cloud and by conserving resources effectively.Further,the proposed model achieved 84.25%of packet delivery ratio which is better compared to existing models in the resulting phase.The data packets are securely transmitted between entities in the proposed model and results showed that proposed TM-SDS model outperforms the existing models in an efficient manner.
文摘针对自动共享电动汽车(shared autonomous electric vehicles,SAEV)运行出现的车辆分配不平衡以及充电优化问题,提出了一种基于云-边协调计算的SAEV优化控制策略。首先,给出SAEV再平衡优化模型以及再平衡任务分配算法;其次,考虑使用V2G和动态电价进行SAEV车队的充放电优化,给出SAEV车队能量交换模型以及出行订单分配算法,以减少整个SAEV车队系统的充电成本;再次,利用云-边协调通信将这些优化结果信息在不同平台间进行互动传输,实现电动汽车的最优充电与迁移策略;最后,通过MATLAB使用真实的深圳出租车数据对该优化控制方法进行验证。结果表明,该框架可降低充电成本,提高交通效率,有望扩展应用到更大规模的系统中。所提云-边协调控制策略将复杂的SAEV优化问题分解成3个子问题进行求解,为SAEV的最优运行提供了一种新的方法。